ある国際コンソーシアムによって、複数の都市の大気と表面の両方を対象とした、史上最大規模の都市型マイクロバイオームのメタゲノム研究が発表された。この国際プロジェクトでは、世界60都市の公共交通機関や病院から収集したサンプルの配列を決定し、解析を行った。

3万5千年前に現在のルーマニアに住んでいた女性、Peştera Muierii 1の頭蓋骨の全ゲノム配列の決定に初めて成功した。彼女の高い遺伝的多様性は、アフリカからの移住が人類発展の大きなボトルネックになったのではなく、直近の氷河期の間とその後に起こったことを示している。

北米とユーラシア大陸で発見された馬の化石から採取された古代のDNAを調査した結果、両大陸の馬の集団は、ベーリング・ランド・ブリッジを介して、何十万年もの間、何度も行き来し、交配しながらつながっていたことが明らかになった。今回の発見は、最終氷期の終わりに北米で絶滅した馬と、最終的にユーラシア大陸で家畜化され、その後ヨーロッパ人によって北米に再導入された馬との間に、遺伝的連続性があることを示している。

スタンフォード大学の研究者らは、すべての生物の生態に重要な役割を果たす可能性のある新しい種類の生体分子を発見した。この新種の生体分子は「GlycoRNA」と呼ばれ、リボ核酸(RNA)の小さなリボンに糖鎖と呼ばれる糖の分子がぶら下がっている。これまで、同じように糖がついた生体分子は、脂肪(脂質)とタンパク質しか知られていなかった。

ラベンダーというと、その花の独特の香りが思い浮かぶ。この美しい花は、太古の昔から香水やエッセンシャルオイルの原料として使われてきた。この花の美しさは、世界中の人々の想像力をかきたててきた。では、なぜこの花はそれほどまでに特別なのだろうか?

ミネソタ大学ツインシティーズ校の工学・医学研究者が主導した画期的な研究により、新しい癌治療法に使用される人工免疫細胞が物理的な障壁を乗り越え、患者自身の免疫システムが腫瘍と闘うことができることが示された。この研究は、将来、世界中の何百万人もの人々のために、癌治療を改善する可能性がある。 本研究は、2021年5月14日にNature Communications のオンライン版に掲載された。

COVID-19 パンデミックが始まってから数カ月後の2020年初頭、科学者らはCOVID-19感染症の原因ウイルスであるSARS-CoV-2の全ゲノム配列を決定することができた。その時点で、その遺伝子の多くはすでに判明していたが、タンパク質をコードする遺伝子の全容は解明されていなかった。今回、MITの研究者らが広範な比較ゲノム研究を行った結果、SARS-CoV-2のゲノムについて、最も正確で完全な遺伝子アノテーションを作成した。

ウィスコンシン大学及びコロンビア大学の研究者らにより、ヒトパラインフルエンザウイルス(HPIV)の細胞への付着を防ぐことができるペプチドが工学的に開発され、げっ歯類モデルで手法の改良が行われた。HPIVは、小児呼吸器感染症の主な原因であり、クループや肺炎などの病気の30~40%を占めている。また、HPIVは、高齢者や免疫力の低下した人にも感染する。HPIVが人に感染するためには、細胞に取り付いて遺伝子を注入し、新しいウイルスを作り始めなければならない。

免疫というと、感染やワクチン接種後に特定の病原体と戦うために学習する抗体やT細胞からなる適応免疫反応を思い浮かべることが多い。しかし、免疫システムには自然免疫反応もあり、これは、病原体に対して専門的ではない迅速な反応を行い、適応免疫反応をサポートするために、決まった数の技術を使用する。しかし、ここ数年、自然免疫反応のある部分が、場合によってはHIVなどの感染性病原体に対応して訓練されることがわかってきた。

分子生物学と半導体エレクトロニクスを統合するTech+Bio企業である米国のCardea Bio社は、同社の最高科学責任者であるキアナ・アラン博士と共同研究者が、「生物学的に活性化されたグラフェン・トランジスタによる年齢別循環エクソソームの迅速かつ電子的な識別と定量化( Rapid and Electronic Identification and Quantification of Age-Specific Circulating Exosomes via Biologically Activated Graphene Transistors )」と題した論文を、査読付き学術誌「Advanced Biology」に掲載したことを2021年5月4日に発表した。

CRISPR-Cas9遺伝子編集システムは、合成生物学における革新的な技術の申し子となっているが、いくつかの大きな限界がある。CRISPR-Cas9は、特定のDNA断片を見つけて切断するようにプログラムされているが、DNAを編集して目的の変異を作り出すには、細胞をだまして新しいDNA断片を使って切断部分を修復する必要がある。Cas9はしばしば意図しない標的外の部位も切断してしまうため、この「ベイト&スイッチ」は操作が複雑で、細胞にとって有害な場合もある。

ベイラー医科大学麻酔科助教授のDavid J. Durgan博士らは、高血圧症の理解を深めるために、特に腸内細菌叢の乱れが血圧に悪影響を及ぼすことを示唆する新たな証拠を収集している。Durgan博士は、「我々の研究室のこれまでの研究で、SHRSP(高血圧自然発症ラット)モデルなどの高血圧モデル動物の腸内細菌叢の組成が、正常血圧の動物のそれとは異なることが明らかになっている。

COVID-19 の原因ウイルスであるSARS-CoV-2がどのようにして脳に伝播するかについて、新しい研究結果が発表された。この研究は、COVID-19の患者に報告されている驚くべき神経症状の数々や、重篤な神経症状に見舞われる患者と全く見舞われない患者がいる理由を説明するのに役立つ。研究者らは、SARS-CoV-2が、我々の脳を動かす神経細胞(ニューロン)と、ニューロンを支え、保護する脳や脊髄の細胞(アストロサイト)の両方に感染する可能性があるという証拠を報告している。

ミネソタ大学医学部の研究チームは、米国で毎年5万人以上が死亡している末期の大腸癌を標的として治療するための新たな方法を発見した。研究チームは、大腸癌細胞が抗腫瘍免疫反応を回避する新たなメカニズムを発見し、"エクソソーム"を用いた治療戦略の開発に役立てた。2021年4月22日にGastroenterology誌のオンラインで公開されたこの論文は、「腫瘍分泌細胞外小胞はT細胞の共刺激を制御し、腫瘍特異的T細胞応答を誘導するように操作できる(Tumor Secreted Extracellular Vesicles Regulate T-Cell Costimulation and Can Be Manipulated to Induce Tumor Specific T-Cell Responses)」と題されている。

ロブスターの下腹部には、伸縮性と驚くほどの強靭さを兼ね備えた薄い半透明の膜が張り巡らされている。MITのエンジニアが2019年に報告したところによると、 この海洋のアンダーアーマーは、自然界で知られている中で最も強靭なハイドロゲルから作られており、しかも非常に柔軟性があるという。この強さと伸縮性の組み合わせは、海底を這い回るロブスターのシールドになると同時に、泳ぐために前後に曲がることも可能にする。今回、マサチューセッツ工科大学(MIT)の別のチームが、ロブスターの下腹部の構造を模倣したハイドロゲルベースの材料を作製した。

アルバート・アインシュタイン医科大学の研究者らは、アルツハイマー病のモデルマウスにおいて、アルツハイマー病の主要な症状を回復させる実験薬を設計した。この薬は、不要なタンパク質を消化して再利用することで、不要なタンパク質を取り除く細胞のクリーニングメカニズムを再活性化することで作用する。本研究は、2021年4月22日付のCell誌オンライン版に掲載された。この論文は、「シャペロンを介したオートファジーが神経細胞の転移性プロテオームの崩壊を防ぐ(Chaperone-Mediated Autophagy Prevents Collapse of the Neuronal Metastable Proteome)」と題されている。アインシュタイン大学の神経変性疾患研究のためのロバート&ルネ・ベルファー講座、発生・分子生物学教授、加齢研究所の共同ディレクターを務めている本研究の共同リーダーであるAna Maria Cuervo博士 (写真) は、「しかし、今回の研究で、マウスでアルツハイマー病の原因となる細胞クリーニングの低下が、アルツハイマー病の人にも起こることがわかり、我々の薬がヒトにも効く可能性を示唆していることに勇気づけられた。」と述べている。Cuervo博士は、1990年代に、シャペロンを介したオートファジー(chaperone-mediated autophagy;CMA)と呼ばれるこの細胞クリーニングプロセスの存在を発見し、健康と病気におけるCMAの役割について200の論文を発表している。CMAは、加齢とともに機能が低下し、不要なタンパク質が不溶性の塊となって蓄積され、細胞にダメージを与える危険性が高まる。実際、アルツハイマー病をはじめとする神経変性疾患では、患者の脳内に有害なタンパク質の凝集体が存在することが特徴となっている。今回の論文では、CMAとアルツハイマー病の間には動的な相互作用があり、神経細胞でCMAが失われるとアルツハイマー病が発症し、逆にCMAが失われるとアルツハイマー病が発症することが明らかになった。この発見は、CMAを活性化させる薬剤が神経変性疾患の治療に希望を与えることを示唆している。

ピペルロングミンは、ヒハツ(インドナガコショウ・Piper longum)に含まれる化学物質(写真)で、脳腫瘍を含む多くの種類の癌細胞を死滅させることが知られている。このたび、ペンシルバニア大学ペレルマン医科大学の研究者を含む国際チームは、動物モデルを用いて、ピペルロングミンの作用の一端を明らかにし、脳腫瘍の中でも最も治療が困難なタイプの一つである膠芽腫に対する強い活性を確認した。この研究成果は2021年4月14日にACS Central Scienceのオンライン版で発表されたが、ピペルロングミンがどのようにしてTRPV2というタンパク質に結合し、その活性を妨げるのかが詳細に示された。TRPV2は膠芽腫で過剰に発現しており、癌の進行を促進すると考えられている。

ホモ・サピエンスの「秘密兵器」である「創造性」は、ネアンデルタール人に対する大きなアドバンテージとなり、人類の生存に重要な役割を果たした。これは、グラナダ大学(UGR)を中心とする国際科学者チームが、ホモ・サピエンスとネアンデルタール人を区別する、創造性に関連する267の遺伝子を初めて特定した結果だ。この重要な科学的発見は、2021年4月21日にMolecular Psychiatry(Nature)のオンライン版に掲載され、ホモ・サピエンスが最終的にネアンデルタール人に取って代わることを可能にしたのは、創造性に関連するこれらの遺伝子の違いであることを示唆している。

パデュー大学の化学者が、これまで「治療不可能」とされていた癌タンパク質に対抗する化合物の合成法を発見した。この化合物は、さまざまな種類の癌に有効である可能性がある。パデュー大学癌研究センターの化学教授であるMingji Dai博士は、北米原産の低木から発見された希少な化合物にヒントを得て、同僚とともにこの化合物を研究し、費用対効果に優れた効率的な合成方法を発見した。この合成法は、2021年3月11日にJournal of the American Chemical Societyのオンライン版に掲載された論文に記載されている。この論文は、「Curcusone Diterpenesの全合成とターゲットの同定(Total Synthesis and Target Identification of the Curcusone Diterpenes)」と題されている。

膵臓癌の全生存率はわずか9%で、治療は非常に困難だ。しかし、患者が死に至るのは、一般的には原発巣ではなく、癌が発見を逃れて他の臓器に転移する能力のせいである。オクラホマ大学医学部の研究チームは、膵臓癌の細胞が全身に広がる能力に新たな光を当てた研究結果を、消化器系疾患に関する世界的な学術誌であるGastroenterology誌の2021年4月1日号に発表した。この論文は、「亜鉛によるZEB1およびYAP1の共活性化制御が、膵臓癌の上皮間葉転換の可塑性と転移を促進する(Zinc-Dependent Regulation of ZEB1 and YAP1 Coactivation Promotes Epithelial-Mesenchymal Transition Plasticity and Metastasis in Pancreatic Cancer) 」と題されている。

カリフォルニア大学サンフランシスコ校(UCSF)とホワイトヘッド研究所の研究者らはCRISPRの基本的な構造を修正して、ゲノムを超えて、エピゲノム(DNAに引っかかり、遺伝子のスイッチをいつどこで入れるかを制御するタンパク質や小分子)にまでその範囲を広げる方法を見つけ出した。2021年4月9日付のCell誌に掲載された論文で、「CRISPRoff」と呼ばれる新しいCRISPRベースのツールを紹介している。このツールを使えば、遺伝コードに一度も手を加えることなく、ヒト細胞内のほとんどすべての遺伝子のスイッチを切ることができる。エピゲノムは、ウイルス感染から癌まで、多くの疾患で中心的な役割を果たしているため、CRISPRoff技術は強力なエピジェネティック治療法につながる可能性がある。

外科的に腫瘍を取り除けなかった進行したメラノーマに対して、新しい組み合わせの薬物療法が安全かつ有効であることが初期の結果で示された。この併用療法は、生きた風邪のウイルスであるコクサッキーウイルスが、癌細胞に感染して死滅させるという潜在的な価値を実証した初めての試みの一つであると研究者らは述べている。また、ニューヨーク大学ランゴーン・ヘルスのパールマター癌センターの研究者が中心となって実施した第1相試験では、このようなオンコロイドウイルスが、体の免疫防御システムが癌細胞を検出して殺すのを助け、広く使用されている癌治療法の作用を安全に高めることができることを示した初めての試験でもある。

ノースカロライナ州立大学の研究者らは、再開通した血管が狭くなるのを防ぐとともに、血液が不足している虚血組織に再生幹細胞由来の治療を行うことができる「スマートリリース」トリガーを備えたエクソソームコーティングステントを開発した。この研究は、2021年4月5日にNature Biomedical Engineering誌のオンライン版に掲載された。この論文は、「虚血性傷害後の血管治癒のための エクソソーム 溶出ステント (Exosome-Eluting Stents for Vascular Healing After Ischaemic Injury)」と題されている。ノースカロライナ州立大学のポスドク研究員であるShiqi Hu氏(PhD)とZhenhua Li氏(PhD)が共同筆頭著者だ。

アルツハイマー型認知症に関連する希少なゲノム変異を発見するために、世界で初めて全ゲノム配列解析を行い、13個の変異が同定された。また、この研究では、アルツハイマー病と、神経細胞間の情報伝達を担うシナプスの機能や、神経細胞が脳の神経ネットワークを再構築する能力である神経可塑性との間に、新たな遺伝的関連性があることが明らかになった。これらの発見は、この壊滅的な神経疾患に対する新しい治療法の開発に役立つ可能性がある。マサチューセッツ総合病院(MGH)、ハーバード大学T.H.チャン公衆衛生大学院、ベス・イスラエル・ディーコネス・メディカル・センターの研究者らは、これらの発見をAlzheimer's & Dementia誌( The Journal of the Alzheimer's Association )で報告した。

湿疹、またはアトピー性皮膚炎(AD)は、"発疹する痒み "と呼ばれることがある。多くの場合、発疹が出る前にかゆみが始まり、多くの場合、皮膚疾患のかゆみは本当に消えることはない。米国では、約960万人の子どもと約1,650万人の大人がADに罹患しており、患者のQOL(生活の質)に深刻な影響を与えている。掻きたくなるような不快な感覚については多くのことが解明されているが、慢性的な痒みについては多くの謎が残されており、治療の難しさが指摘されている。2021年3月30日にPNASのオンライン版に掲載された、ブリガム・アンド・ウィメンズ病院とハーバード・メディカル・スクールによる論文は、痒みの根本的なメカニズムについて新たな手がかりを提供するものである。

イタリアの研究者らは、乳癌の成長を促進し、治療後に腫瘍の再発を開始する癌幹細胞の集団を維持するのに役立つ一対のマイクロRNA分子を特定した。この研究は、2021年4月2日にJournal of Cell Biology(JCB)のオンライン版に掲載されたもので、これらのマイクロRNAを標的とすることで、癌幹細胞が一部の化学療法に対して感受性を高め、侵攻型乳癌患者の予後を改善できる可能性があることを明らかにした。このオープンアクセス論文は「miR-146は乳がんにおける幹細胞のアイデンティティと代謝および薬剤耐性を結びつける(miR-146 Connects Stem Cell Identity with Metabolism and Pharmacological Resistance in Breast Cancer)」と題されている。多くの腫瘍には、腫瘍の成長を開始し、腫瘍に見られる様々な種類の細胞を生み出す少数の癌幹細胞が存在する。さらに、癌幹細胞は放射線治療や化学療法に抵抗性を示すことが多いため、初期治療後も生き残り、腫瘍の再発や転移を促進することがある。例えば、乳癌では、癌幹細胞が比較的多く存在する腫瘍は、癌幹細胞が少ない腫瘍に比べて予後が非常に悪い。したがって、乳癌やその他の腫瘍の治療を成功させるためには、これらの幹細胞を除去することが重要であると考えられる。腫瘍内での癌幹細胞の存続を助ける分子の1つに、マイクロRNAがある。この短いRNA分子は、タンパク質をコードする何百もの長い「メッセンジャー」RNAのレベルを調節することで、細胞の運命やアイデンティティを制御する。「我々は、正常な乳腺幹細胞の維持に必要なマイクロRNAのうち、癌幹細胞に継承され、乳癌の治療標的となりうるものを特定したいと考えた」と、イタリア工科大学(ミラノ)ゲノム科学センターの主任研究者でセンターコーディネーターのFrancesco Nicassio 博士(写真)は語る。今回の研究では、共同研究者のPier Paolo Di Fiore博士(欧州腫瘍学研究所のグループリーダー、ミラノ大学教授)らが、正常な乳腺幹細胞だけでなく、乳癌幹細胞にも存在する2つの密接に関連するマイクロRNA、miR-146aとmiR-146bを同定した。実際、この2つのマイクロRNAのレベルは、癌幹細胞が多く存在し、予後が悪いとされる侵攻性乳癌で高くなる傾向があった。

テキサス大学サウスウエスタン校(UTSW)の研究チームは、哺乳類の受精卵が初期に発生してできる胚盤胞に似た生物学的構造を生成した。研究チームは、研究のために提供された胚から得られたヒト胚性幹細胞と、成人の細胞から生成されたヒト誘導多能性幹細胞(総称してヒト多能性幹細胞と呼ぶ)を用いて、この研究を行った。この研究成果は、2021年3月17日にNature誌のオンライン版に掲載され、ヒトの初期発生、妊娠損失、および発達障害の研究に新たな方法を提供する可能性がある。

悪性黒色腫患者の癌幹細胞(cancer stem cells :CSC)から放出された エクソソーム は、分化した悪性黒色腫細胞からのエクソソームとは異なる分子組成を持つことが新しい研究で明らかになった。これらの異なる分子は、血液中のエクソソームでも検出可能であり、悪性黒色腫患者では健常者と比べて違いがあることがわかった。このことから、これらの分子は、悪性黒色腫の診断や予後を判定するためのバイオマーカーとして適していると考えられるという。本研究成果は、Molecular Oncology誌のオンライン版に2020年10月14日に掲載された。

バーミンガム大学が主導する英国トップクラスのラグビー選手に関する研究は、唾液を用いて脳震盪を正確に診断する方法を特定し、スポーツやその他の環境で使用するための脳震盪の最初の非侵襲的臨床検査の道を開くものだ。この研究は、ラグビーフットボールユニオン、プレミアシップラグビー、Marker Diagnostics社と共同で実施された。外傷性脳損傷後に唾液中の特定の分子(マイクロRNA)の濃度が急速に変化することを特定した以前の研究に続き、研究者らはこれらの「バイオマーカー」がスポーツ関連の脳震盪の診断テストとして使用できるかどうかを確認するため精鋭ラグビーチームでの3年間の研究に着手した。バーミンガム大学の研究室でDNAシーケンス技術を使用し、英国ラグビーの上位2リーグであるプレミアシップとチャンピオンシップで競う1,028人のプロの男子ラグビー選手からの唾液サンプルでこれらのバイオマーカーをテストした。

ベイラー医科大学とテキサスチルドレンズホスピタル(NRI)のJan and Dan Duncan 神経研究所の研究者は、マウスとヒトにおけるMecp2 / MECP2の適切な発現に必要なDNAの2つの領域を特定し特徴づけた。2021年3月18日にGenes&Developmentのオンラインで公開されたこれらの調査結果は、これらのDNA領域の機能と、レット症候群やMECP2重複症候群などの知的障害の診断および治療的介入の潜在的な標的となる可能性があることを明らかにするのに役立つ。この新論文は「Mecp2の発現と神経機能に影響を与える保存された非コードシス調節エレメントの同定と特性評価(Identification and characterization of conserved noncoding cis-regulatory elements that impact Mecp2 expression and neurological functions)」と題されている。

コロナウイルスは、いばらの冠に似た密集した表面受容体を備えた構造をしている。 これらのスパイク状タンパク質は健康な細胞をしっかり掴み、ウイルスRNAの侵入を引き起こす。 ウイルスの形状と感染戦略は一般的に理解されているが、その物理的完全性についてはほとんど知られていない。MITの機械工学科の研究者による新研究は、コロナウイルスが医用画像診断で使用される周波数内で超音波振動に対して脆弱である可能性があることを示唆している。 チームは、コンピューターシミュレーションを通じて、超音波周波数の範囲にわたる振動に対するウイルスの機械的応答をモデル化した。 彼らは、25〜100メガヘルツの振動が、ウイルスの殻とスパイクを崩壊させ、何分の1ミリ秒以内に破裂を引き起こすことを発見した。 この効果は、空気中および水中のウイルスのシミュレーションで見られた。この結果は暫定的なものであり、ウイルスの物理的特性に関する限られたデータに基づいている。 しかしこの研究者らは、この発見は、新規のSARS-CoV-2ウイルスを含むコロナウイルスの超音波ベースの治療の可能性についての最初のヒントであると述べている。 超音波をどれだけ正確に投与できるか、そして人体の複雑さの中でウイルスに損傷を与えるのにどれほど効果的かは、科学者が今後取り組む必要のある主要な課題の1つだ。「超音波励起下でコロナウイルスの殻とスパイクが振動し、その振動の振幅が非常に大きくなり、ウイルスの特定の部分を破壊する可能性のあるひずみを生成し、外殻に目に見える損傷を与え、場合によっては目に見えない内部のRNAに損傷を与えることを証明した。」とMITの応用力学教授であるTomasz Wierzbicki博士は述べている。 「我々の論文がさまざまな分野にわたる議論を開始することを願っている。」チームの結果は、2021年2月18日にJournal of the Mechanics and Physics of Solidsのオンラインで公開された。 この論文は「コロナウイルスの共鳴および一過性の調和振動に対する受容体の影響(Effect of Receptors on the Resonant and Transient Harmonic Vibrations of Coronavirus)」と題されている。

マルセル・プルーストの小説「失われたときを求めて」にはマドレーヌで記憶がよみがえり紅茶のカップから記憶が溢れ出てくるという章があるように、匂いは強力に記憶を呼び起こすことができる。 ノースウェスタン大学ファインバーグ医学部の研究者らによって執筆された新論文は、脳がどのように匂いがそれらの記憶を非常に強力に引き出すことを可能にするかについての神経基盤を特定した最初のものである。この論文は、海馬と人間の嗅覚領域との間の独特の接続性を示している。 この新研究は、脳の記憶領域への嗅覚による特権的アクセスの神経生物学的基礎を示唆している。 この研究では、視覚、聴覚、触覚、嗅覚などの一次感覚野と海馬の関係を比較し、嗅覚が最も強い接続性を持っていることが分かったという。 これは匂いから海馬までの高速道路のようなものだ。ノースウェスタン大学ファインバーグ医学部の神経学助教授であるChristina Zelano 博士は、次のように述べている。 「視覚、聴覚、触覚はすべて、新皮質が拡大するにつれて脳内で再ルーティングされ、直接ではなく、中間の連合皮質を介して海馬に接続した。我々のデータは、嗅覚がこの再ルーティングを受けず海馬への直接アクセスを維持した ことを示唆している。」2021年2月25日にNeurobiologyのオンラインで公開されたこの論文は「ヒトの海馬の接続性は他の感覚系よりも嗅覚が強い(Human Hippocampal Connectivity Is Stronger in Olfaction Than Other Sensory Systems)」と題されている。COVID-19では、嗅覚喪失が蔓延しており、匂いが我々の脳にどのように影響するか(記憶、認知など)を理解することがこれまで以上に重要になっているとZelano 博士は述べている。 「COVID関連の嗅覚喪失の理由をよりよく理解し、喪失の重症度を診断し、治療法を開発するために、嗅覚系をよりよく理解することが緊急に必要だ」と、ノースウェスタン大学で神経学の博士号を取得した、筆頭著者で研究助教授のGuangyu Zhou 博士は述べた。「我々の研究は、嗅覚、嗅覚喪失、および将来の治療に関する基礎研究だ。」以下は、匂いの感覚の重要性、嗅覚の研究、および COVID-19 との関連に関するZelano博士との質疑応答だ。

テキサス大学医学部サウスウェスタンメディカルスクール(UTSW)とインディアナ大学の研究者は遺伝子工学を使い、マウス脊髄の瘢痕形成細胞を再プログラムすることで新しい神経細胞を作成し、脊髄損傷後の回復を促進することを示した。 2021年3月5日にCell Stem Cellのオンラインで公開された調査結果は、毎年脊髄損傷に苦しむ世界中の何十万人もの人々に希望を与える可能性がある。この論文は「NG2グリアのin vivoリプログラミングが脊髄損傷後の成人の神経新生と機能回復を可能にする(In vivo Reprogramming of NG2 Glia Enables Adult Neurogenesis and Functional Recovery Following Spinal Cord Injury)」と題されている。UTSW分子生物学教授でこの研究リーダーのChun-Li Zhang博士は、「一部の体組織の細胞は、損傷後に増殖し、治癒の一環として死んだ細胞や損傷した細胞に取って代わるが、脊髄は通常は損傷後に新しいニューロンを生成せず、回復への重要な障害になっている。」と説明した。脊髄は脳と体の他の部分との間の信号リレーとして機能するため、自己修復できないと、これら2つの領域間の通信が永久に停止し、麻痺、感覚の喪失、場合によっては呼吸や心拍数を制御できないなど生命を脅かす結果につながると彼は付け加えている。Zhang 博士は、脳は新しい神経細胞を生成する能力が限られており、異なる再生経路をオンにするために前駆細胞に依存していると述べている。 彼と彼の同僚は、この知識からインスピレーションを得て、脊髄で同様の再生の可能性がある細胞を探した。

Nsp1と呼ばれるコロナウイルスタンパク質が遺伝子の活性をどのように抑制し、ウイルス複製を促進するかを特定する研究は、新しい COVID-19 治療への希望をもたらすものだ。 パンデミックが始まって以来、科学者らは、 COVID-19 の原因となるコロナウイルスであるSARS-CoV-2を理解するために果てしなく取り組んできた。ワクチンの登場にもかかわらず、ウイルスはまだ蔓延しており、代替療法を開発する必要がある。 テキサス大学医学部サウスウェスタンメディカルスクール(UTSW)の研究者らは、SARS-CoV-2がどのように細胞に感染し、体の自然な免疫系を避けながら増殖するのかを研究することで、これを達成したいと考えている。

最大6年をかけて腎臓移植を待った患者は、移植を受けたとしても、最大20パーセントの患者が拒絶反応を経験する。移植片拒絶反応は、レシピエントの免疫細胞が新たに受け取った腎臓を外来臓器として認識し、ドナーの抗原を受け入れることを拒否した場合に発生する。腎臓拒絶反応を検査するための現在の方法には、侵襲的な生検手順が含まれ、患者は数日間入院させられる。Exosome Diagnostics社とブリガムアンドウィメンズ病院による研究では、尿サンプルからの エクソソーム (mRNAを含む可能性のある小さな小胞)を使用して移植拒絶反応をテストする新しい非侵襲的方法が提案された。彼らの調査結果は、2021年3月2日にJournal of the American Society of Nephrologyのオンラインで公開された。

スターウォーズのジェダイが「フォース」を使って遠くから物体を制御するのと同じように、科学者は光または「オプティカルフォース」を使って非常に小さな粒子を動かすことができる。 「光ピンセット」として知られるこの画期的なレーザー技術の発明者は、2018年のノーベル物理学賞を受賞した。 光ピンセットは、金原子などのナノ粒子を組み立てて操作するために、生物学、医学、および材料科学で使用される。 ただし、この技術は、トラップされた粒子と周囲の環境の屈折特性の違いに依存している。現在、科学者らは、背景環境と同じ屈折特性を持つ粒子を操作して、根本的な技術的課題を克服できる新しい技術を発見した。

ベイラー医科大学の研究者らは、攻撃的なヒトの癌からのプロテオミクス、またはすべてのタンパク質データの分析が、潜在的な新しい治療標的を特定するための有用なアプローチであることを示した。 2021年2月24日にOncogeneのオンラインで公開された論文で、研究した7つの癌タイプのそれぞれに対する侵攻性疾患の臨床的測定における発見を報告した。いくつかのシグネチャは、異なるタイプの癌の間で共有され、代謝が変化した細胞経路が含まれていた。 重要なことに、この実験結果は、それらのプロテオミクス解析アプローチが潜在的な治療標的を特定するための貴重な戦略であるという概念実証を提供した。このOncogeneの論文は、「質量分析に基づくグレードとステージのプロテオミクス相関により、攻撃的なヒトの癌に関連する経路とキナーゼが明らかに(Mass-Spectrometry-Based Proteomic Correlates of Grade and Stage Reveal Pathways and Kinases Associated With Aggressive Human Cancers.)」と題されている。「この研究には2つの注目すべき側面がある。1つは、攻撃的な形態の癌に関連して発現したタンパク質を探し、癌のプロテオミクスの状況を調査したことだ」と、共同執筆者でベイラー医科大学のダンL.ダンカン総合癌センターの医学および癌バイオインフォマティクスの共同ディレクターであるChad Creighton博士(写真)は述べた。 「我々は、臨床プロテオミクス腫瘍分析コンソーシアム(the Clinical Proteomic Tumor Analysis Consortium: CPTAC)によって提供された7つの異なる癌タイプ(乳房、結腸、肺、腎臓、卵巣、子宮、および小児神経膠腫)を含む約800の腫瘍からの数万のタンパク質を含むタンパク質データを分析した。」CPTACデータセットの計算分析により、攻撃的な形態の癌に関連するプロテオミクスシグネチャが特定された。 これらの特徴は、攻撃的な癌の行動を引き起こしている可能性があり、新しい治療標的を表す可能性のある細胞経路の変化を示している。 それぞれの癌の種類は、その攻撃的な形態に特有のプロテオミクスの特徴を示した。 興味深いことに、いくつかのシグネチャはさまざまな種類の癌に共通していた。

アミロイド斑は、アルツハイマー病の病理学的特徴であり、誤って折りたたまれたタンパク質の塊が脳に蓄積し、ニューロンを破壊して殺し、広範な神経障害の特徴である進行性の認知障害を引き起こす。2021年3月2日にJournal of Experimental Medicine(JEM)にオンラインで公開された新研究は、 カリフォルニア大学サンディエゴ校医学部、マサチューセッツ総合病院などの研究者によって、老人斑の形成に関与する重要な酵素を阻害するのではなく、調節することによってアルツハイマー病を予防できる新薬を特定したというものだ。このオープンアクセスの論文は、「アルツハイマー病予防のための強力なγ-セクレターゼモジュレーターの前臨床検証(Preclinical Validation of a Potent γ-Secretase Modulator for Alzheimer’s Disease Prevention.)」と題されている。げっ歯類とサルを使用した研究で、研究者らは、この薬が安全で効果的であることがわかったと報告し、ヒトでの可能な臨床試験への道を開いた。「アルツハイマー病は非常に複雑で多面的な状態であり、これまでのところ、予防はもちろんのこと、効果的な治療に挑戦してきた」と、カリフォルニア大学サンディエゴ校医学部神経科学科教授のSteven L. Wagner博士は述べている 。「我々の調査結果は、アルツハイマー病の重要な要素の1つを防ぐ可能性のある潜在的な治療法を示唆している。」

ノースウェスタン大学の研究者は、ALS(筋萎縮性側索硬化症・ルーゲーリック病としても知られる)の主要な原因である上位運動ニューロンの進行中の変性を排除する最初の化合物を特定した。これは、その犠牲者に麻痺を引き起こす迅速で致命的な神経変性疾患だ。ALSに加えて、上位運動ニューロン変性は、遺伝性痙性対麻痺(HSP)や原発性側索硬化症(PLS)などの他の運動ニューロン疾患も引き起こす。ALSでは、脳の運動開始神経細胞(上位運動ニューロン)と脊髄の筋肉制御神経細胞(下位運動ニューロン)が死ぬ。 この病気は急速に進行して麻痺と死をもたらす。 これまでのところ、ALSの脳成分に対する薬や治療法はなく、HSPまたはPLS患者に対する薬もない。「上位運動ニューロンは運動の開始と調節に関与し、それらの変性はALSの初期のイベントだが、これまでのところ、健康を改善するための治療オプションはなかった」とノースウエスタン大学ファインバーグ医学部の神経学准教授であるHande Ozdinler 博士は述べている。「我々は、病気になった上位運動ニューロンの健康を改善する最初の化合物を特定した。」この研究は、2021年2月23日にClinical and Translational Medicineのオンラインで公開された。 このオープンアクセスの論文は「ミトコンドリアとERの安定性の改善が、mSOD1の毒性とTDP-43の病理によって発生する上位運動ニューロンの変性を排除するのに役立つ(Improving Mitochondria and ER Stability Helps Eliminate Upper Motor Neuron Degeneration That Occurs Due to mSOD1 toxicity and TDP‐43 Pathology)」と題されている 。 ノースウェスタン大学化学のOzdinler 博士は、この研究の著者のRichard B. Silverman 博士、Patrick G. Ryan/Aon 教授と共同で研究を行った。

アルツハイマー病や筋萎縮性側索硬化症(ALS)(ルーゲーリック病とも呼ばれる)などの神経変性疾患の一般的な特徴は、脳と脊髄全体にわたるシナプス(脳細胞間のコミュニケーションの解剖学的部位)の進行性の損失だ。通常、シナプス損失は、記憶喪失や麻痺などの疾患の症状が出現する前に蔓延する。 脳機能が深刻に低下し始める前に広範なシナプス損失が存在する必要があるという事実は、神経系が深い機能的予備力を維持し、損傷が転換点を通過して脳の回復力が低下し始めるまで、すべてが正常に機能し続けることを示唆している。

最近発表された結果によると、Sean M. Healey&AMG Center for ALS for Massachusetts General Hospital(MGH)およびAmylyx Pharmaceuticals Inc.(薬剤を製造した会社)による臨床試験の結果、実験的に組み合わせた薬で筋萎縮性側索硬化症(ALS)またはルーゲーリック病(37歳でALSで亡くなった野球選手(写真)にちなんで名付けられた)と呼ばれる神経変性疾患の進行を遅らせることができたという。ニューイングランドジャーナルオブメディシンの2020年9月3日号で報告されたこの調査結果は、治療法が知られておらず、動き、話し、食べ、さらには呼吸する個人の能力を徐々に妨げる致命的な状態のALS患者の治療がいつか可能になることを期待している。 AMX0035と呼ばれる経口薬は、フェニル酪酸ナトリウムとタウルソジオールの2つの薬の組み合わせで、それぞれ神経細胞死を防ぐために重要な、異なる細胞成分を標的としている。AMX0035は、ALSおよびその他の神経変性疾患における小胞体およびミトコンドリア依存性の神経変性経路を標的としている。 このNEJMの論文は「フェニル酪酸ナトリウムの試験-筋萎縮性側索硬化症に対するタウルソジオール(Trial of Sodium Phenylbutyrate–Taurursodiol for Amyotrophic Lateral Sclerosis)」と題されており、「ALSとの戦いにおける漸進的利益(Incremental Gains in the Battle Against ALS)」と題された関連記事が付いている。

国際研究チームは、オマキザルのゲノムを初めて配列決定し、これらの動物の長寿と大きな脳の進化についての新しい遺伝的手がかりを明らかにした。2021年2月16日にPNASのオンラインで公開されたこの仕事は、カナダのカルガリー大学の研究者が主導し、リバプール大学の研究者も参加した。 このオープンアクセスの論文は、「fecalFACSで明らかにされたオマキザルの生態学的柔軟性、大きな脳、および長命のゲノミクス(The Genomics of Ecological Flexibility, Large Brains, and Long Lives in Capuchin Monkeys Revealed with fecalFACS.)」と題されている。「オマキザルはサルの中で相対的な脳のサイズが最も大きく、体のサイズが小さいにもかかわらず50歳を超えて生きることができるが、その遺伝的基盤はこれまで未踏のままだった。」と、リバプール大学で老化研究を行う共著者のJoao Pedro DeMagalhaes教授は説明した。研究者らは、これらの特性の進化を探求するために、白い顔をしたオマキザル(Cebus imitator)のリファレンスゲノムアセンブリを開発し、注釈を付けた。 科学者らは、多種多様な哺乳類にまたがる比較ゲノミクスアプローチを通じて、長寿と脳の発達に関連する進化的選択の下にある遺伝子を特定した。「両方の形質の根底にある遺伝子にポジティブセレクションのサインが見つかった。これは、そのような形質がどのように進化するかをよりよく理解するのに役立つ。さらに、熱帯雨林と 季節的乾林のオマキザルの集団を調べることにより、干ばつと季節の環境への遺伝的適応の証拠を見つけた。」とオマキザルの行動と遺伝学を約20年間研究しているカルガリー大学のAmanda Melin 博士は語った。

COVID-19 を引き起こすウイルスであるSARS-CoV-2は、感染後にさまざまな方法で人々に影響を与える。 軽度の症状しか見られない、またはまったく症状が見られない人もいれば、入院を必要とするほどになり、呼吸不全を発症して死亡する人もいる。沖縄科学技術大学院大学(OIST)とドイツのマックスプランク進化生物学研究所の研究者らは、COVID-19で深刻な病気になるリスクを約20%減らす、ネアンデルタール人から受け継がれた遺伝子グループを発見した。「もちろん、高齢や糖尿病などの基礎疾患などの他の要因は、感染した個人の病気に大きな影響を及ぼす」と、OISTでヒト進化ゲノミクスユニットを率いるSvante Pääbo教授は述べている。「しかし、遺伝的要因も重要な役割を果たしており、これらのいくつかはネアンデルタール人から現代人に渡されたものだ。」昨年、Pääbo教授と彼の同僚であるHugo Zeberg教授は、Natureで、これまでに特定されたウイルスに感染したときに重度のCOVID-19を発症するリスクを2倍にする最大の遺伝的危険因子はネアンデルタール人から受け継がれたことを報告していた。彼らの最新の研究は、重度のCOVID-19を発症した2,244人のゲノム配列を収集した英国のGenetics of Mortality in Critical Care(GenOMICC)コンソーシアムから昨年12月に発表された新しい研究に基づいている。 この英国の研究は、個人がウイルスにどのように反応するかに影響を与える4つの染色体上の追加の遺伝子領域を特定した。2021年2月16日にPNAS のオンラインで公開された研究で、Pääbo教授とZeberg教授は、新たに特定された領域の1つが変異体を持っていることを示している。これは、3人のネアンデルタール人(クロアチアの約50,000年前のネアンデルタール人と南シベリアの約70,000年前と約12万年前の2人のネアンデルタール人)に見られるものとほぼ同じだ。 このオープンアクセスのPNASの論文は、「深刻なCOVID-19に対し保護するゲノム領域はネアンデルタール人から受け継がれている(A Genomic Region Associated with Protection Against Severe COVID-19 Is Inherited from Neandertals.)」と題されている。驚いたことに、この遺伝的要因は最初に発見された遺伝的要因とは反対の方向でCOVID-19の結果に影響を与え、重度のCOVID-19を発症するリスクを高めるのではなく保護をもたらす。 この変異体は染色体12に位置し、感染後に個人が集中治療を必要とするリスクを約22%低減する。「ネアンデルタール人が約40,000年前に絶滅したにもかかわらず、その免疫システムが今日でも我々にプラスとマイナスの両方の影響を与えていることは非常に驚くべきことだ」とPääbo教授は述べている。この変異体がCOVID-19の結果にどのように影響するかを理解するために、研究チームは染色体12の変異体の領域にある遺伝子を詳しく調べた。彼らはこの領域の3つの遺伝子がOASと呼ばれ、ウイルスに感染すると生成される感染した細胞のウイルスゲノムを分解する他の酵素を活性化する酵素をコードしていることを発見した。「ネアンデルタール人の変異体によってコードされる酵素はより効率的であり、SARS-CoV-2感染への深刻な結果の可能性を減らすようだ」とPääbo教授は説明した。彼らはまた、新たに発見されたネアンデルタール人のような遺伝的変異が、約60,000年前に現代人になってからの頻度がどのように変化したかを研究した。これを行うために、彼らはさまざまな年齢の何千ものヒトの骨格から、さまざまな研究グループによって取得されたゲノム情報を使用した。彼らは、変種が最後の氷河期の後に頻度が増加し、その後、過去千年の間に再び頻度が増加したことを発見した。 その結果、今日ではアフリカ国外に住む人の約半数、日本人の約30%に起こっているという。 これとは対照的に、以前、ネアンデルタール人から受け継いだとされる主要なリスク変異が日本人にはほとんど存在しないことを発見した。「この保護的なネアンデルタール人の変種の頻度の上昇は、過去にも、おそらくRNAウイルスによって引き起こされた他の病気の発生時に有益であった可能性があることを示唆している」とPääbo教授は述べている。(Image Credit: Bjorn Oberg, Karolinska Institute)

カリフォルニア大学サンディエゴ校(UCSD)のエンジニアは、首に装着して血圧と心拍数を継続的に追跡しながら、装着者のブドウ糖をはじめ、乳酸塩、アルコール、またカフェインレベルも測定できる、柔らかく伸縮性のあるスキンパッチ(写真)を開発した。 これは、人体の心臓血管信号と複数の生化学的レベルを同時に監視する初のウェアラブルデバイスだ。「このタイプのウェアラブルデバイスは、基礎疾患のある人々が定期的に自分の健康状態を監視するのに非常に役立つ」と、UCSDのナノエンジニアリング博士課程の学生でネイチャーバイオメディカルエンジニアリングの2021年 2月15日にオンライン公開された研究の共同筆頭著者であるLuYin氏は述べている。このオープンアクセスの論文は、「血行動態と代謝のバイオマーカーを同時にモニタリングするための表皮パッチ(An Epidermal Patch for the Simultaneous Monitoring of Haemodynamic and Metabolic Biomarkers.)」と題されている。「それは、特に人々が COVID-19 パンデミック下で病院への訪問を最小限に抑えている、遠隔患者モニタリングのための素晴らしいツールとしても役立つだろう。」 このようなデバイスは、高血圧と糖尿病を管理している個人、つまり COVID-19 で深刻な病気になるリスクが高い個人に役立つ可能性がある。 また、乳酸値の急激な上昇を伴う血圧の突然の低下を特徴とする敗血症の発症を検出するために使用することもできる。すべて行うことができる1つの柔らかい皮膚パッチは、血圧やその他のバイタルサインの継続的な監視を必要とするNICUの乳児を含む集中治療室の患者にとっても便利な代替手段を提供する。 現在これらの手順には、患者の動脈の奥深くにカテーテルを挿入し、患者を複数の病院のモニターにつなぐことが含まれている。「ここでの目新しさは、完全に異なるセンサーとして、切手と同じくらい小さい単一の小さなプラットフォームにそれらを統合することだ」と、UCSDのナノエンジニアリングの教授で研究の共同執筆者であるJoseph Wang博士は述べている。 「我々はこのウェアラブルデバイスで、非常に多くの情報を、日常の活動に不快感や中断を引き起こすことなく、非侵襲的な方法で収集できる。」新しいパッチは、Wang博士がディレクターを務めるUCSDウェアラブルセンサーセンターでの2つの先駆的な取り組みの成果だ。 Wang博士の研究室では、体内の複数の信号(化学的、物理的、電気生理学的)を同時に監視できるウェアラブルを開発している。 また、UCSDナノエンジニアリング教授のSheng Xu博士の研究室では、研究者らは、体内の深部の血圧を監視できる、柔らかく伸縮性のある電子皮膚パッチを開発している。 研究者らは力を合わせることで、化学センシング(ブドウ糖、乳酸塩、アルコール、カフェイン)と血圧モニタリングを組み合わせた初の柔軟で伸縮性のあるウェアラブルデバイスを作成した。「各センサーは、物理的または化学的変化の個別の画像を提供する。それらすべてを1つのウェアラブルパッチに統合することで、これらの異なる画像をつなぎ合わせて、我々の体で起こっていることのより包括的な概要を得ることができる」とXu博士は述べている。

豚はおそらく飛ぶことはできないだろうが、新研究では、イノシシ属内のいくつかの種が驚くべきレベルの行動的および精神的柔軟性を持っているかもしれないことを明らかにしている。 2021年2月11日にFrontiers in Psychologyのオンラインで公開された研究では、4頭の豚が簡単なジョイスティック対応のビデオゲームをプレイできるかどうかをテストした。 この論文は「豚(イノシシ)によるジョイスティック操作のビデオタスクの取得(Acquisition of a Joystick-Operated Video Task by Pigs (Sus scrofa).)」と題されている。知能を分析するためにヒト以外の霊長類に通常与えられるタスクの器用さは限られているにもかかわらず、各動物はある程度の概念的理解を示した。 この研究には、ハムレットとオムレツという名前の2頭のヨークシャー豚と、エボニーとアイボリーという名前の2頭のパネピントミニ豚が含まれていた。

アナフィラキシーは、皮膚、胃腸管、呼吸器系、そして心臓血管系に影響を与える可能性がある全身性アレルギー反応だ。 アナフィラキシーの最も重篤な形態はアナフィラキシーショックであり、これは低血圧を特徴とし、死を引き起こす可能性がある。 この反応には、食物、薬、昆虫の毒に対するアレルギー反応など、いくつかの原因が考えられる。これらの反応の重症を引き起こす分子メカニズムは未だ不明だ。バルセロナ大学(UB)とIDIBAPS(August Pi i Sunyer Biomedical Research Institute)の研究者が主導した研究では、アシナガバチ(Polistes dominula)の毒に対するアレルギーによって引き起こされた再発性アナフィラキシーショックに苦しむ患者で検出された遺伝子突然変異を分析した 。2020年12月29日にJournal of Allergy and Clinical Immunologyのオンラインで公開された研究結果は、アナフィラキシー反応の重症度を制御できる新しい分子メカニズムを明らかにした(ログインして画像を参照のこと)。 この研究は、UBとIDIBAPSの研究者であるMargarita Martín博士とRosa Muñoz-Cano医学博士が主導した。 どちらも、カルロス3世研究所の喘息、アレルギー、および有害反応ネットワーク(ARADyAL)のメンバーだ。 この論文は「KARSの突然変異:重度のアナフィラキシーの新しいメカニズム(Mutation in KARS: A Novel Mechanism for Severe Anaphylaxis.)」と題されている。研究者らは、患者で検出されたKARS遺伝子(リシルtRNAシンテターゼ、LysRSをコードする)の変異の生化学的、機能的、および構造的特性評価を実施した。「この研究は、重度のアナフィラキシーの患者からの臨床データとKARS遺伝子の突然変異キャリアを、この遺伝子によってコードされるLysRSタンパク質の異常な機能を示す生化学的、機能的、および構造的データと組み合わせている」とMartín博士は述べている。

免疫療法薬に反応しない癌患者において、腸内微生物(腸内細菌叢として知られている)の組成を糞便移植により調整することで、免疫療法薬に反応するようになるかもしれないと新研究が示唆している。国立衛生研究所の一部である国立癌研究所(NCI)癌研究センターの研究者がピッツバーグ大学医療センター(UPMC)ヒルマン癌センターの研究者と共同研究を実施した。この研究では、免疫療法の一種である免疫チェックポイント阻害剤による治療に最初は反応しなかった進行性黒色腫の一部の患者が、薬に反応した患者からの糞便微生物叢の移植を受けた後、薬に反応したという。この結果は、特定の糞便微生物を患者の結腸に導入すると、免疫系が腫瘍細胞を認識して殺す能力を高める薬に患者が反応するのに役立つ可能性があることを示唆している。この調査結果は、Scienceの2021年2月5日号に掲載された。この論文は「糞便微生物叢移植が黒色腫患者の抗PD-1療法に対する耐性を克服する(Fecal Microbiota Transplant Overcomes Resistance to Anti–PD-1 Therapy in Melanoma Patients)」と題されている。「近年、PD-1およびPD-L1阻害剤と呼ばれる免疫療法薬は、特定の種類の癌を患う多くの患者に利益をもたらしたが、癌が反応しない患者を助けるための新しい戦略が必要だ。」と研究共同リーダーで NCIの癌研究センターの統合癌免疫学研究所の責任者であるGiorgio Trinchieri 医学博士は述べた。「我々の研究は、腸内細菌叢の組成を変えることで免疫療法への反応を改善できることを患者に示した最初の研究の1つだ。 このデータは、腸内細菌叢が癌の治療標的になり得るという概念実証を提供する。」Trinchieri博士は、免疫療法薬に対する腫瘍の耐性を克服するために重要な微生物を特定し、関与する生物学的メカニズムを調査するために、さらに研究が必要であると付け加えた。研究によると、腸内の細菌やウイルスのコミュニティは、免疫系と、化学療法や免疫療法に対するその反応に影響を与える可能性がある。 たとえば、以前の研究では、免疫療法薬に反応しない担癌マウスは、薬に反応したマウスから特定の腸内微生物を受け取った場合に反応し始める可能性があることが示されている。腸内細菌叢を変えると、免疫療法薬に抵抗する腫瘍の微小環境が「再プログラム」され、これらの薬による治療により有利になる可能性がある、とTrinchieri博士は述べている。糞便移植が安全であり、癌患者が免疫療法によりよく反応するのを助けるかもしれないかどうかをテストするために、Trinchieri博士と彼の同僚は、進行した黒色腫の患者のための小さなシングルアーム臨床試験を開発した。 この患者の腫瘍は、免疫チェックポイント阻害剤であるペンブロリズマブ(Keytruda)またはニボルマブ(Opdivo)を単独で、または他の薬剤と組み合わせて投与した1回以上の治療に反応しなかった。 免疫チェックポイント阻害剤は、免疫系が腫瘍細胞を攻撃するのを防ぐブレーキを解除する。この研究では、ペンブロリズマブに反応した進行性黒色腫の患者から得られた糞便移植を分析して、感染性病原体が感染しないことを確認した。 生理食塩水および他の溶液で治療した後、糞便移植片は結腸内視鏡検査によって患者の結腸に送達され、各患者はペムブロリズマブも投与された。

オーストラリア のクイーンズランド大学(UQ)の研究者は、認知症やアルツハイマー病の原因となる可能性がある脳細胞の新しい「播種」プロセスを発見した。 UQのクイーンズランド脳研究所の認知症研究者であるJürgen Götz 博士は、この研究により、絡み合ったニューロンは、認知症の特徴的な兆候であり、細胞プロセスによって部分的に形成され、有毒なタウタンパク質が健康な脳細胞に漏れることを可能にすることが明らかになったと述べた。「これらの漏れは、タウのもつれを引き起こし、最終的には記憶喪失やその他の障害につながる、損傷を与えるシードプロセスを形成する」とGötz教授は述べている。 Götz教授は、これまで、研究者らはタウシードが健康な細胞に取り込まれた後、どのように逃げることができるのか理解していなかったと述べた。

ミシガン大学ローゲル癌センターとミシガン大学工学部の研究者らは、癌と戦うためのナチュラルキラー免疫細胞の配備という新たな治療法の開発の面で一歩進んでいる。この研究者らは、ナチュラルキラー細胞をキャプチャーし、それらに癌を殺す エクソソーム を放出させる最初の体系的な方法を開発した。 これらのナノスケールのエクソソームは、ナチュラルキラー(NK)細胞の数千分の1であるため、癌細胞の防御にうまく浸透することができるという。非小細胞肺癌の5人の患者からの血液サンプルでの概念実証研究は、アプローチがマイクロ流体チップ上のナチュラルキラー細胞をキャプチャーし、それらを使用してNKエクソソームを放出できることを示した。

2021年は、すべての生化学の教科書に載っている基本的な発見の100周年だ。 1921年、ドイツの医師Otto Warburgは、癌細胞がブドウ糖からエネルギーを奇妙で非効率的な方法で収穫することを観察した。癌細胞は酸素を使用してブドウ糖を「燃焼」させる(好気性解糖)のではなく、酵母が発酵で行うような急速に起こる酸素非依存性プロセス(嫌気性解糖)でそれを行うが、グルコースエネルギーの多くは未利用のままだ。「ワールブルク効果」を説明するさまざまな仮説が長年にわたって提案されてきた。これには、癌細胞には欠陥のあるミトコンドリア(「エネルギー工場」)があり、したがってブドウ糖の野焼きを実行できないという考えが含まれる。 しかし、これらの説明はどれも時の試練に耐えることができなかった。 (たとえば、癌細胞のミトコンドリアは問題なく機能する。)現在、免疫学者のMing Li博士率いるスローンケタリング研究所の研究チームは、多数の遺伝的および生化学的実験に基づき、Scienceの2021年1月22日号に新しい答えを提供した。 それは、ワールブルク代謝と、PI3キナーゼと呼ばれる細胞内の強力な酵素活性との間のこれまで認識されていなかった関連性に帰着する。 この論文は「解糖系がホスホイノシチド3-キナーゼのシグナル伝達を促進してT細胞免疫を強化する(Glycolysis Fuels Phosphoinositide 3-Kinase Signaling to Bolster T Cell Immunity.)」と題されている。「PI3キナーゼは、細胞代謝の最高司令官のように機能する重要なシグナル伝達分子だ」とLi博士は述べた。 「細胞分裂を含む、細胞内のエネルギーコストのかかる細胞イベントのほとんどは、PI3キナーゼが合図を出したときにのみ発生する。」細胞がワールブルク代謝に移行すると、PI3キナーゼの活性が高まり、細胞の分裂への取り組みが強化される。 これは、最高司令官にメガホンを渡すようなものだ。 調査結果は、代謝を細胞シグナル伝達の二次的なものと見なす生化学者の間で一般的に受け入れられている見解を修正する。 結果はまた、代謝を標的とすることが癌の成長を阻止する効果的な方法である可能性があることを示唆している。

英国のウェルカムサンガーインスティテュート、ニューカッスル大学そしてキングスカレッジの研究者らは、皮膚の非常に詳細なマップを作成した。これは、炎症性皮膚疾患の患者の細胞で、発生からの細胞プロセスが再活性化されることを明らかにしている。 湿疹や乾癬の患者の皮膚が、発達中の皮膚細胞と多くの同じ分子経路を共有していることを発見した。これは、これらの痛みを伴う皮膚病を治療するための潜在的な新薬の標的を提供する。Science の2021年1月22日号に掲載されたこの研究は、炎症性疾患のまったく新しい理解も提供し、関節リウマチや炎症性腸疾患などの他の炎症性疾患の研究に新しい道を開くものだ。 このScience の論文は「発生細胞プログラムは炎症性皮膚疾患に採用されている(Developmental Cell Programs Are Co-Opted In Inflammatory Skin Disease.)」と題されている。人体のすべての細胞タイプをマッピングするためのグローバルなHuman Cell Atlasの取り組みの一部である、発達中の成人の皮膚の新しい包括的なアトラスは、世界中の科学者にとって貴重なリソースだ。 また、再生医療のテンプレートを提供し、研究者が実験室でより効果的に皮膚を成長させるのに役立つ。我々の皮膚はバリアとして機能し、侵入するバクテリアやウイルスから体を守り、健康には不可欠だ。 アトピー性湿疹や乾癬などの炎症性皮膚疾患は慢性疾患であり、免疫系が過剰に活動し、皮膚のかゆみや薄片状の皮膚を引き起こし、非常に痛みを伴い、感染しやすくなる。 これらの状態は人々の生活に重大な影響を与える可能性があるが、原因は不明であり、治療法はなく、症状を和らげるのに役立つだけだ。皮膚は、さまざまな種類の細胞で構成される複雑な組織だ。 皮膚がどのように形成され、これが成人の健康と病気にどのように関連するかを学ぶために、研究者らは皮膚の発達からの細胞を研究し*、これらを健康な成人、湿疹および乾癬患者からの生検と比較した。チームは、最先端の単一細胞技術と機械学習を使用して、50万を超える個々の皮膚細胞を分析し、各細胞でどの遺伝子がオンになっているのかを正確に確認した。 これにより、研究者は個々の細胞が何をするのか、そして細胞が互いにどのように話し合うのかを知ることができた。 驚くことに、研究者らは、病気の皮膚細胞が発達中の細胞と同じ細胞メカニズムの多くを共有していることを発見した。

シカゴにあるラッシュ大学医療センターの新研究で、マウスの COVID-19 モデルに鼻からペプチドを導入したところ、効果を示したという。 このペプチドは、発熱を抑え、肺を保護し、心臓機能を改善し、「サイトカインストーム」(感染が免疫系を誘発して炎症性タンパク質で血流を溢れさせる状態)を逆転させるのに効果的であることが証明された。この研究者らはまた、病気の進行を防ぐことに成功したと報告している。2021年1月11日にJournal of Neuroimmune Pharmacologyにオンラインで公開されたこの論文は「SARS-CoV-2(AIDS)ペプチドのACE-2相互作用ドメインが炎症を抑制して発熱を抑え、マウスの肺と心臓を保護する:COVID-19療法への影響(ACE-2-interacting Domain of SARS-CoV-2 (AIDS) Peptide Suppresses Inflammation to Reduce Fever and Protect Lungs and Heart in Mice: Implications for COVID-19 Therapy.)」と題されている。「これは、SARS-CoV-2感染を防ぎ、COVID-19患者を呼吸の問題や心臓の問題から保護するための新しいアプローチになる可能性がある」「メカニズムを理解することがCOVID-19の効果的な治療法を開発するために重要であることが証明されている。集中治療室(ICU)の多くのCOVID-19患者は影響を与えるサイトカインストームに苦しんでいる 肺、心臓、その他の臓器。ステロイドなどの抗炎症療法が利用可能だが、これらの治療法は免疫抑制を引き起こすことがよくある。」「SARS-CoV-2はアンギオテンシン変換酵素2(ACE2)に結合して細胞に侵入するため、 SARS-CoV-2のACE2相互作用ドメインに対応するヘキサペプチドを設計して、ウイルスとACE-2の結合を阻害した」と、ラッシュ大学医療センターのフロイドA.デイビス神経学教授でありジェシーブラウンVA医療センターの研究キャリアサイエンティストでもあるKalipada Pahan博士は述べた。

何年もの間、コーラルベリー(写真)の葉からの活性物質は、新種の強力な薬になると思われてきたが、これまでこの物質を大量に製造することは非常に労力を要する作業だった。ドイツのボン大学の研究者らは、この物質を生成する実験室で簡単に培養できる細菌を特定したことから、状況は変わるかもしれない。この結果は、2021年1月8日にNature Communicationsでオンラインで公開された。 このオープンアクセスの論文は「チオエステラーゼを介した側鎖エステル交換が強力なGqシグナル伝達阻害剤FR900359を生成する(Thioesterase-Mediated Side Chain Transesterification Generates Potent Gq Signaling Inhibitor FR900359.)」と題されている。コーラルベリーは現在、再び多くのリビングルームを飾っている。 冬には真っ赤な実をつけ、北半球でこの時期に人気のある観賞植物だ。

植物は、草食動物から身を守るために有毒物質を生成する。 新研究では、イエナのマックスプランク化学生態学研究所とドイツのミュンスター大学の科学者が、野生のタバコ植物で防御物質の重要なグループであるジテルペン配糖体の生合成と正確な作用機序を「フラソミクス(FRASSOMICS)」と呼ばれる新アプローチを用いて、詳細に解明することに成功した。ジテルペン配糖体は、植物が草食動物から身を守ることを可能にしている。 この研究では、これらの植物化学物質が細胞膜の特定の部分を攻撃することを示している。 タバコ植物は、自身の毒素から身を守り、細胞膜の損傷を防ぐために、これらの物質を非常に特殊な方法で合成し無毒の形で保存するという。

ベルギーのルーヴァン・カトリック大学の研究者らは、特定の食品を食べると腹痛を感じる人がいる理由を説明する生物学的メカニズムを特定した。 この発見は、過敏性腸症候群(irritable bowel syndrome: IBS)やその他の食物不耐性のより効率的な治療への道を切り開くものだ。マウスとヒトで実施されたこの研究は、2021年1月13日にNatureのオンラインで発表された。 この論文は「食品抗原に対する局所免疫反応が食事誘発性腹痛を引き起こす(Local Immune Response to Food Antigens Drives Meal-Induced Abdominal Pain.)」と題されている。世界の人口の最大20%が過敏性腸症候群に苦しんでおり、これは食後に胃の痛みや重度の不快感を引き起こし、この人たちの生活の質に影響を及ぼしている。 グルテンフリーやその他の食事療法はある程度の緩和をもたらすことができるが、患者は問題の食品にアレルギーがなく、セリアック病などの既知の状態も持っていないため、なぜこうなるのかは謎だった。

細胞由来の エクソソーム は、母乳中の主要なタンパク質(カゼイン)と混合して経口投与すると病気の治療に効果的であることが、シダーズ・サイナイ医療センター・シュミット心臓研究所の実験用マウスによる新研究で示された。2021年1月11日にJournal of Extracellular Vesiclesにオンラインで公開された調査結果は、筋ジストロフィーと心不全の患者を治療するための新しい経口薬を開発するための基礎を確立する可能性がある。 このオープンアクセスの論文は、「摂取された細胞外小胞のカゼイン増強取り込みおよび疾患修飾生物活性(Casein‐enhanced uptake and disease‐modifying bioactivity of ingested extracellular vesicles.)」と題されている。この研究は、シュミット心臓研究所の心臓病学教授であるEduardo Marbán医学博士が率いる10年以上の研究に基づいている。この研究は、ヒトの心臓球由来細胞(cardiosphere-derived cells :CDC)と、それらの細胞から分泌されて体中を移動するエクソソームと呼ばれる細胞外小胞の一種に焦点を当てている。エクソソーム にはさまざまな生体分子が含まれている。 「2009年に最初のヒト試験を開始した当初、我々は患者の心臓に細胞を注入していた。そして、細胞自体が治療上の答えであると考えていた」とMarbán博士は述べた。 「今では、もっとも大変な部分は実はエクソソームであることがわかっている。我々の最近の研究では、経口投与した場合も同じくらい効果的である可能性が示されている。」2010年に最初の研究が終了して以来、Marbán博士は、細胞を患者に送達する新しい洞察と新しい方法、および細胞が潜在的に役立つ可能性のある患者のタイプの発見など、いくつかの研究を主導した。Marbán博士が主導した最初の研究は、心臓病と動脈の詰まりのある患者を対象としていた。 筋ジストロフィー患者の親がMarbán博士に、CDCが進行性の筋力低下(心筋の衰弱を含む)と筋肉量の減少を経験する筋ジストロフィー患者を助けることができるかどうかを尋ねたことで、Marbán博士は筋ジストロフィー患者の治療法の開発を目的とした追加研究プロジェクトを開始した。

最悪の脳腫瘍である神経膠芽腫の原因となる発癌遺伝子が特定された。 この発見は、致命的な癌に有望な新しい治療標的を提供するものだ。 この研究者らは、癌遺伝子は癌細胞の生存に不可欠であり、それがなければ、癌細胞は死ぬと述べた。この成果は2020年7月10日にネイチャーコミュニケーションズで発表された。 この論文は「細胞骨格レギュレーターAVILが膠芽腫の腫瘍形成を促進する(A Cytoskeleton Regulator AVIL Drives Tumorigenesis in Glioblastoma.)」と題されている。バージニア大学(UVA)医学部およびUVA癌センターの研究者であるHui Li博士は、既に同様の「oncogene addiction」を伴う他の癌を対象とした多くの標的療法を開発している。 彼は「膠芽腫は最も致命的な癌の1つだ。残念ながら、この疾患に対する効果的な治療オプションはない。現在の標準オプションである放射線とテモゾロミドは、2.5ヶ月の生存率向上で大きな成功を収めたが、明らかに、より良い理解と新たな治療目標が緊急に必要とされている」と語った。「我々が発見した新しい癌遺伝子は、神経膠芽腫のアキレス腱であることが証明されており、その特定の標的は、疾患の治療のための潜在的に効果的なアプローチだ。」発癌遺伝子は、自然に発生する遺伝子であり、制御不能になって癌を引き起こす。 Li博士と彼の同僚が特定した癌遺伝子、avilllin(AVIL)は、通常、細胞がそのサイズと形を維持するのを助ける。 しかし、この遺伝子は様々な要因によってオーバードライブに移行する可能性があることを彼らは発見した。 これにより、癌細胞が形成され広がる。遺伝子の活動をブロックすると、実験用マウスの神経膠芽腫細胞は完全に破壊されたが、健康な細胞には影響がなかった。 これは、遺伝子を標的とすることが効果的な治療選択肢となり得ることを示唆している。

マイアミ大学ミラー医学部の研究者らは、臍帯由来の間葉系幹細胞の注入によって最も重症の COVID-19 患者の死亡リスクを安全に減らし、回復までの時間を短縮することを示す、ユニークで画期的なランダム化比較試験を主導した。 STEM CELLS Translational Medicineで2021年1月5日に掲載されたこのオープンアクセス論文は「COVID-19急性呼吸窮迫症候群の臍帯間葉系幹細胞:二重盲検、フェーズ1 / 2a、ランダム化比較試験(Umbilical Cord Mesenchymal Stem Cells for COVID-19 Acute Respiratory Distress Syndrome: A Double‐Blind, Phase 1/2a, Randomized Controlled Trial.)」と題されている。この研究の筆頭著者である、マイアミ大学ミラー医学部の糖尿病研究所(DRI)および細胞移植センターの所長であるCamillo Ricordi医師は、COVID-19を間葉系幹細胞(画像)で治療することは理にかなっていると述べた。

新研究で骨が形成され維持される方法を支配する細胞種が発見され、骨粗鬆症などの骨障害の治療法の潜在的なターゲットが切り開かれた。 ペンシルベニア大学のペレルマン医学部の教員が率いるげっ歯類による研究では、骨髄脂肪生成系統前駆体(marrow adipogenic lineage precursors : MALP)が骨の再構築に明確な役割を果たしていることが示された。 このプロセスの欠陥は骨粗鬆症の重要な問題であるため、これらのMALP細胞を使用して骨のリモデリングをより適切に調節する治療は、より適切な治療につながる可能性がある。

外傷からの感染や、脳卒中など脳損傷の治癒過程は、膠芽腫の成長を促進する可能性がある。 2021年1月4日にNature Cancerのオンラインで公開されたこの調査結果は、トロント大学病院、ザ・ホスピタル・フォー・シック・チルドレン(SickKids)およびプリンセスマーガレット癌センターの学際的な研究者チームによって報告された。 この研究者らは、膠芽腫として知られる一般的な脳腫瘍に焦点を当てた、カナダ全土の癌に立ち向かうカナダドリームチームの一員だ。「我々のデータは、脳内の特定の細胞の突然変異が損傷によって変化して腫瘍を引き起こす可能性があることを示唆している」とトロント大学テマーティ医学部の脳神経外科部門の責任者であり、SickKids の発達および幹細胞生物学プログラムの上級科学者でもあるドリームチームリーダーのPeter Dirks 医学博士は述べている。

褐色脂肪はあなたがもっと欲しがるかもしれない魔法の組織かもしれない。 カロリーを蓄える白色脂肪とは異なり、褐色脂肪はエネルギーを燃焼し、科学者はそれが新しい肥満治療の鍵を握ることを望んでいる。 しかし、褐色脂肪が豊富な人が、本当に健康を楽しんでいるかどうかは長い間不明だった。 褐色脂肪は体の奥深くに隠されているため、褐色脂肪が豊富な人を特定することさえ困難だったのがその理由の一つだ。2021年1月4日に Nature Medicine のオンラインで公開されたロックフェラー大学の研究チームによって実施された新研究では、その強力な証拠を提供している 。この論文は「褐色脂肪組織は心臓代謝の健康に関連している(Brown Adipose Tissue Is Associated with Cardiometabolic Health.)」と題されている。

過去数十年の間に、研究者は神経変性疾患につながる生物学的経路を特定し、それらを標的とする有望な分子剤を開発した。 しかし、これらの臨床的に承認された治療への変換は、血液脳関門(blood-brain barrier:BBB)を越えて脳に治療薬を送達する際に直面する課題のために、なかなか進まずにいる。 脳への治療薬の送達を成功させるために、ブリガムアンドウィメンズ病院とボストンチルドレンズホスピタルのバイオエンジニア、医師、および共同研究者のチームは、マウスの物理的に損傷した/または 無傷のBBB を使いナノ粒子プラットフォームを作成した。外傷性脳損傷(traumatic brain injury: TBI)のマウスモデルでは、この送達システムが従来の送達方法の3倍の脳内蓄積を示し、治療的にも効果的であり、多くの神経障害の治療の可能性を開く可能性があることが観察された。

アフリカおよび世界中の顧みられない熱帯病(neglected tropical diseases :NTD)の根絶を達成するために新薬の発見は不可欠だ。 PLOS Neglected Tropical Diseases で報告された研究成果では、ガーナ特有の3つの病気(住血吸虫症、オンコセルカ症、リンパ系フィラリア症)に対してラボで機能する伝統的なガーナの薬を特定したという。2020年12月31日にオンラインで公開されたこのオープンアクセスの論文は、「いくつかのガーナの伝統医学とその成分の抗シストソーム、抗腫瘍細胞および抗トリパノソーマの可能性(Antischistosomal, Antionchocercal and Antitrypanosomal Potentials of Some Ghanaian Traditional Medicines and Their Constituents.)」と題されている。ガーナにおける顧みられない熱帯病への主な介入は、現在、いくつかの薬剤の繰り返し大量投与であり、これは有効性の低下と薬剤耐性の出現につながる可能性がある。 住血吸虫症、オンコセルカ症、およびリンパ系フィラリア症の慢性感染症は致命的となる可能性がある。住血吸虫症は、住血吸虫のビルハルツ住血吸虫とマンソン住血吸虫によって引き起こされる。 オンコセルカ症、または河川失明症は、寄生虫オンコセルカボルブルスによって引き起こされる。 リンパ系フィラリア症は、象皮病とも呼ばれ、寄生性の糸状虫Wuchereria bancroftiによって引き起こされる。新研究では、ガーナ大学のDorcas Osei-Safo 博士(写真)と同僚が、ガーナ伝統医学実践者協会から、地域社会で顧みられない熱帯病の治療に使用される15の伝統薬を入手した。

ヘモグロビンはいくつかの種で独立して出現したが、実際には共通の祖先によって伝達された単一の遺伝子に由来することが、フランス国立科学研究センター(CNRS)、パリ大学、ソルボンヌ大学、サンクトペテルブルク大学そしてリオデジャネイロ大学の科学者らによる新研究で示された。これらの調査結果は、2020年12月29日にBMC Evolutionary Biologyのオンラインで公開された。 このオープンアクセスの論文は「海洋環形動物Platynereis dumeriliiのグロビンは、左右相称動物のヘモグロビン進化に新たな光を当てる。(Globins in the Marine Annelid Platynereis dumerilii Shed New Light on Hemoglobin Evolution in Bilaterians.)」と題されている。赤血球を持つことは、人間や哺乳類に特有のものではない。 この色は、脊椎動物だけではなく環形動物(最も有名なメンバーがミミズであるワームファミリー)、軟体動物(特に池のスネイル)そして甲殻類( ミジンコ)の循環系にも見られる酸素の輸送に特化した複雑なタンパク質であるヘモグロビンに由来する。ヘモグロビンがこのような多様な種に出現するためには、進化の過程で何度か「発明」されたに違いないと考えられていた。 しかし、最近の研究では、「独立して」生まれたと考えられているこれらのヘモグロビンはすべて、実際には単一の祖先遺伝子に由来することが示された。

カリフォルニア州ラホーヤにあるスクリプス研究所の化学者は、生命が地球上でどのように発生したかについての新しい見方を支持する驚くべき発見をした。ドイツ化学会誌のアンゲヴァンテ・ケミーに2020年12月15日にオンラインで公開された研究によると、生命が生まれる前に地球上に存在していたと思われるジアミドホスフェート(DAP)と呼ばれる単純な化合物が、デオキシヌクレオシドと呼ばれる小さなDNAビルディングブロックを化学的に編み合わせて原始DNA鎖にした可能性があるという。この発見は、過去数年にわたる一連の発見の最新のものであり、DNAとその密接な類縁のRNAは、同様の化学反応の産物として一緒に発生し、最初の自己複製分子(地球上で最初の生命体)は2つの混合物だったことを示している。

網膜神経節細胞(Retinal ganglion cells:RGC)は、すべての視覚的印象が網膜から脳に流れるボトルネックだ。 マックス・プランク神経生物学研究所、カリフォルニア大学バークレー校、そしてハーバード大学のチームは、これらのニューロンのさまざまなタイプを説明する分子カタログを作成した。 これにより、個々の網膜神経節細胞タイプを体系的に調査し、特定の接続、機能、および行動応答に関連付けることができる。ゼブラフィッシュが光を見るとき、彼らはしばしばそれに向かって泳ぐ。 信号は完全に異ながるが、獲物と同じだ。 一方、捕食者は魚に逃げるよう促す。 取り違えは致命的な結果をもたらすので、それは良いことだ。 しかし、脳はどのようにして視覚刺激に適切な行動で反応するのだろうか?

中毒、うつ病、およびその他の精神障害を治療する可能性のある、幻覚剤ではないバージョンのサイケデリックス薬イボガインが、カリフォルニア大学デービス校の研究者によって開発された。この仕事を説明する論文が2020年12月9日にNatureのオンラインで公開された。 この論文は「治療の可能性を秘めた非幻覚剤サイケデリックスアナログ(A Non-Hallucinogenic Psychedelic Analogue with Therapeutic Potential.)」と題されている。「サイケデリックスは、脳に影響を与えることがわかっている最も強力な薬の一つだ」と、カリフォルニア大学デービス校の化学の助教授であり、この論文の筆頭著者であるDavid Olson 博士は述べている。 「我々がそれらについてほとんど知らないのは信じられないほどだ。」イボガインは、植物Tabernanthe ibogaから抽出される(画像)。 薬物への渇望を減らし、再発を防ぐなど、強力な中毒防止効果をもたらす可能性があるという事例報告がある。しかし、幻覚や心臓毒性などの深刻な副作用もあり、この薬は米国法の下でスケジュールⅠに分類される規制薬物だ。カリフォルニア大学デービス校にあるOlson 博士の研究室は、スケジュールⅠの物質を扱うことを認可された米国で数少ない研究室の1つだ。 彼のグループは、サイケデリックス化合物の望ましくない影響なしに治療特性を保持するイボガインの合成類似体の作成に着手した。 Olson 博士のチームは、イボガイン分子の一部を交換することにより、一連の同様の化合物を調べた。 彼らは、tabernanthalogまたはTBGと名付けた新しい合成分子を設計した。イボガインとは異なり、新しい分子は水溶性であり、単一のステップで合成することができる。 細胞培養とゼブラフィッシュを使った実験では、(心臓発作を引き起こす可能性があり、いくつかの死の原因となっている)イボガインよりも毒性が低いことが示されている。

マウスで食物摂取を抑制し満腹感を高めるホルモンが、ヒトとヒト以外の霊長類でも同様の結果を示したことが、eLife(2020年11月24日)のオンラインで公開された新研究で述べられている。 この論文は「リポカリン-2は霊長類の食欲抑制シグナルである。(Lipocalin-2 Is an Anorexigenic Signal in Primates.)」と題されている。リポカリン-2(画像)と呼ばれるホルモンは、満腹感の自然なシグナルが機能しなくなった肥満の人々の潜在的な治療法として使用できるかもしれない。 リポカリン-2は主に骨細胞によって産生され、マウスやヒトで普通に見られる。 マウスの研究では、リポカリン-2を動物に長期間与えると、代謝が遅くなることなく、食物摂取量が減少し、体重増加が防止されることが示されている。「リポカリン-2は食後の満腹感のシグナルとして機能し、マウスに食物摂取を制限させる。これは、脳内の視床下部に作用することによって行われる。」「リポカリン-2がヒトに同様の効果をもたらすかどうか、そしてその用量が血液脳関門を通過できるかどうかを確かめたかったのだ。」と、著者のPeristera-Ioanna Petropoulou 博士(この研究が実施された時点では、米国ニューヨークのコロンビア大学アーヴィング医療センターで、現在はドイツ・ミュンヘンのヘルムホルツ糖尿病センターに所属。)は述べた。チームは最初に、正常体重、太りすぎ、または肥満のいずれかである米国とヨーロッパの人々の4つの異なる研究からのデータを分析した。 各研究の人々は一晩絶食した後に食事を与えられ、食事の前後の彼らの血中のリポカリン-2の量が研究された。

脂肪組織が COVID-19 の悪化に重要な役割を果たすという証拠が増えている。 調査中の理論の1つは、脂肪細胞(adipocytes)がSARS-CoV-2の貯蔵庫として機能し、肥満または太りすぎの人のウイルス量を増加させるというものだ。科学者らはまた、感染中に脂肪細胞が血流中に放出され、生体内のウイルスによって引き起こされる炎症反応を促進すると考えている。これらの仮説は、ブラジルのサンパウロ大学医学部(FM-USP)臨床外科の教授 Marilia Cerqueira Leite Seelaender博士の調整の下調査されており、英国オックスフォード大学の教授であり、2019年のノーベル生理学・医学賞(「細胞が酸素の利用可能性をどのように感知して適応するかを発見したこと」)の受賞者の1人であるPeter Ratcliffe 医学博士が協力している。

もし鳴き鳥たちが「The Masked Singer」(翻訳者注:米テレビシリーズ・芸能人が覆面を身に着けて歌を歌うカラオケ勝ち抜きバトル)の審査員になれば、きっとキンカチョウが番組を牛耳るだろう。 カリフォルニア大学バークレー校の新研究によると、キンカチョウは群れの少なくとも50メンバーの異なる特徴的な音をすばやく記憶できるからだ。Science Advances(2020年11月13日号)に掲載されたこの調査結果では、キンカチョウとして知られる騒々しく赤いくちばしの鳴き鳥は、特定の仲間の独特の歌または呼び掛けに基づいて群れからお互いを選ぶことが示されている。 この論文は「ソーシャルソングバードにおける音声コミュニケーションのための大容量聴覚記憶(High-Capacity Auditory Memory for Vocal Communication in a Social Songbird.)」と題されている。キンカチョウは、まるで人がどの友人やどの親戚がその声で呼んでいるのかを即座に知ることができるように、言語マッピングで人に近い能力を持っている。 さらに、彼らはお互いのユニークな発声を数ヶ月、そしておそらくもっと長く覚えることができる、と調査結果は示唆している。「キンカチョウの驚くべき聴覚記憶は、鳥の脳が洗練された社会的コミュニケーションに高度に適応していることを示している」と、この研究の筆頭著者であるカリフォルニア大学バークレー校の心理学、統合生物学、神経科学のFrederic Theunissen 博士は述べている。Theunissen博士と仲間の研究者らは、純粋にキンカチョウの独特の音に基づいて彼らの仲間を識別する能力の範囲と大きさを測ろうとした。 その結果、一生を共にする鳥のパフォーマンスは予想以上に良かった。「動物の場合、コホートメンバーの呼び出しのソースと意味を認識するには、複雑なマッピングスキルが必要だ。キンカチョウはこれを明確に習得している。」とTheunissen博士は述べている。鳥と人の聴覚コミュニケーションの研究のパイオニアであるTheunissen博士は、カリフォルニア大学バークレー校のポスドク研究員であるJulie Elie博士とのコラボレーションを通じて、キンカチョウのコミュニケーションスキルに魅了された。 Elie博士は生まれ故郷のオーストラリアの森でキンカチョウを研究した神経倫理学者である。彼らのチームワークは、キンカチョウのコミュニケーションスキルに関する画期的な発見をもたらした。

2020年11月20日、プロジェリア研究財団は、プロジェリアおよびプロセシング欠損早老性ラミン病(PL)の治療薬であるZokinvy™(ロナファルニブ)が米国食品医薬品局(FDA)により認可されたと発表した。プロジェリアは、非常にまれで、致命的で、急速に老化する常染色体優性疾患だ。 希少疾患研究財団のパイオニアであるプロジェリア研究財団は、2007年からZokinvyの臨床試験研究を主導してきた。Zokinvyはファルネシルトランスフェラーゼ阻害剤(FTI)であり、プロジェリアの子供たちに延命効果を示していた。プロジェリア研究財団国際患者登録からの情報と、プロジェリア研究財団とボストンチルドレンズホスピタルが調整した臨床試験に基づくデータは、プロジェリアの患者において、Zokinvyが死亡率を60%(p = 0.0064)減少させ、平均生存期間を 2.5年伸ばした。Zokinvy治療を行わないと、プロジェリアの子供は平均14.5歳で心臓病で亡くなってしまう。

イスラエルのテルアビブ大学とシャミール医療センターによる新研究は、健康な老化した成人の高圧酸素治療が血球の老化を止め、老化プロセスを逆転させることができることを示した。 生物学的な意味で、成人の血球は治療が進むにつれて実際に若くなるという。この研究者らは、圧力チャンバー内の高圧酸素によるユニークなプロトコルによる治療が、老化とその病気に関連する2つの主要なプロセス(テロメアの短縮と体細胞の機能不全による古い蓄積)を逆転させることができることを発見した。 被験者の血液から得られたDNAを含む免疫細胞に焦点を当てたこの研究では、老化細胞の存在下でテロメアの最大38%の延長と、最大37%の老化細胞の減少が発見された。

テキサス大学サウスウエスタン(UTSW)の研究者は、細胞内のタンパク質の量を調節する遺伝子分子であるマイクロRNA(miRNA)を分解する細胞のメカニズムを発見した。 2020年11月12日にサイエンスのオンラインで報告されたこの研究成果は、細胞の内部の働きに光を当てるだけでなく、 最終的には、感染症、癌、および他の多くの健康問題と戦うための新しい方法につながる可能性がある。 この論文は、「ユビキチンリガーゼは、テーリングとトリミングとは独立して、ターゲットに向けられたマイクロRNAの崩壊を仲介する(A Ubiquitin Ligase Mediates Target-Directed Microrna Decay Independently of Tailing and Trimming.)」と題されている。遺伝子には生物の体内のすべてのタンパク質を作るための指示が含まれていることが以前より知られている。ただし、さまざまなプロセスによって、どのタンパク質が生成されるかどうか、そしてその量は規制されている。 これらのメカニズムの1つには、miRNAが関与している。これは、細胞内のメッセンジャーRNA(mRNA)の相補的な断片を分解し、mRNA配列がタンパク質に翻訳されるのを防ぐ遺伝物質の小さな断片だ。1993年にmiRNAが発見されて以来、研究者らは何百もの異なるmiRNA分子とその標的、およびそれらの産生、成熟、発達、生理学、疾患における役割を制御するメカニズムに関する豊富な知識を蓄積してきた。 ただし、UTSWの分子生物学部の教授兼副学部長の Joshua Mendell博士(写真)と博士研究員のJaeil Han博士は、miRNAの使用が終了したときに、細胞がmiRNAをどのように処理するかについてはほとんど知られていなかったと説明した。「miRNA分子が細胞内に付着している限り、それらは標的mRNAからのタンパク質の産生を減少させる」とハワードヒューズ医学研究所(HHMI)の研究者でUTSWメディカルセンターのメンバーであるMendell博士は説明する。 「したがって、細胞が不要になったときにmiRNAを取り除く方法を理解することは、細胞がいつどのように仕事をするかを完全に理解するために極めて重要だ。」この質問に答えるために、Mendell博士、Han 博士、および彼らの同僚は、遺伝子編集ツールCRISPR-Cas9を利用した。Mendell博士は、「分子はさみ」として機能することで、このシステムは個々の遺伝子を切り出し、研究者がそれらの機能を探求できるようになったと述べている。

ヴァンダービルト大学医療センター(VUMC)の研究者らは、 COVID-19 が成人や高齢者に優先的に感染して発症する一方で、幼い子供には感染しにくいように見える理由について鍵となるファクターを特定した。 COVID-19を引き起こすRNAウイルスであるSARS-CoV-2が、肺の気道上皮細胞に侵入するのに必要な酵素/補助受容体であるTMPRSS2(画像)のレベルが大人より子供の方が低くかった。2020年11月12日にJournal of Clinical Investigationにオンラインで公開された調査結果は、高齢者のCOVID-19を治療または予防する為に、この酵素をブロックする取り組みを支持している。 この論文は「年齢によって決定されるプライミングプロテアーゼTMPRSS2の発現と肺上皮におけるSARS-CoV-2の局在(Age-Determined Expression of Priming Protease TMPRSS2 and Localization of SARS-CoV-2 in Lung Epithelium.)」と題されている。「我々の研究は、特に乳児や非常に幼い子供が感染したり、重篤な病気の症状を示したりする可能性が低いと思われる理由の生物学的根拠を提供するものだ。」と、Jonathan Kropski 医学博士とこの研究を主導した小児科(新生児学)の助教授であるJennifer Sucre 医学博士は述べている。Sucre博士とKropski博士は、この論文の共著者であり、 VUMCの小児科および遺伝学のレジデントであり、博士研究員であるBryce Schuler 医学博士が、この論文の筆頭著者だ。SARS-CoV-2について学ぶことはまだたくさんあるが、よく知られているのは、ウイルス粒子が肺に吸入された後、ウイルス体から突き出るタンパク質の「スパイク」が、特定の肺細胞の表面にある受容体であるACE2に付着する。 TMPRSS2(膜貫通プロテアーゼセリン2)と呼ばれる酵素がスパイクタンパク質を切断し、ウイルスが細胞膜に融合して細胞に「侵入」できるようにする。 中に入ると、ウイルスは細胞の遺伝子機構を乗っ取りウイルスRNAのコピーを作成する。2016年より未熟児と成人の肺疾患の研究で協力しているSucre 博士とKropski 博士は、TMPRSS2が子供と比較して高齢者で観察されるCOVID-19症状の重症度と関係があるのではないかと考えた。

2020年11月14日にThe Journal of Extracellular Vesiclesのオンラインで公開されたオープンアクセスの論文で、イェール大学医学部内科リウマチ学および臨床免疫学部門医学病理学教授のPhilip Askenase医学博士(写真)は、重度の COVID-19 患者の場合、間葉系幹細胞(MSC)由来の エキソソーム が、重度の肺炎およびサイトカインストームの治療に優れている可能性があると主張している。この論文は「間葉系幹細胞(MSC)と回復期血漿を用いたCOVID-19療法はエクソソームの関与を考慮しなければならない:回復期血漿のエクソソームは弱い免疫抗体に拮抗するか?(COVID-19 Therapy with Mesenchymal Stromal Cells (MSC) and Convalescent Plasma Must Consider Exosome Involvement: Do the Exosomes in Convalescent Plasma Antagonize the Weak Immune Antibodies?)」と題されている。

赤ちゃんが希なタイプの糖尿病を発症した理由についての遺伝的パズルを解くことで、インスリン産生の基礎となる新しい生物学的パスウェイが明らかになり、より一般的な糖尿病においても新しい治療法の研究が促進されるかもしれない。2020年11月9日にJournal of Clinical Investigationに発表されたこの研究はゲノムシーケンシングを使用して、出生直後に糖尿病を発症するという共通の臨床的特徴を持つ赤ちゃんのグループのすべてがYIPF5遺伝子に突然変異があることを明らかにした。 この研究は、幹細胞研究とCRISPR遺伝子編集ツールを組み合わせて、この遺伝子がインスリンを産生する細胞の機能に不可欠であることを示している。

1915年にイギリス海外派遣軍で最初に観測された塹壕熱は、第一次世界大戦中に推定50万人の兵士を病気にした。それ以来、この病気は戦場の代名詞となっている。 しかし今日、国際的な研究チームによる新研究で、この病気に関する証拠が明らかになった。PLOS ONE(2020年11月4日)で公開されたこの研究は、第一次世界大戦より数千年も前の民間人に起きた塹壕熱の、DNAエビデンスの発見について概説している。この研究チームは1世紀から19世紀の間に生きていた合計 145人の骨片と歯を分析した。それらの約20%には、塹壕熱の原因となる細菌であるBartonella quintana の痕跡が含まれていた。 サウスフロリダ大学(USF)歴史学部の准教授であり、文化と環境の高度な研究のための研究所のメンバーであるDavide Tanasi 博士は、シチリア島のシラキュースにあるローマの墓地からこのプロジェクトの遺骨を発掘した。 USFのデジタル探査研究所の所長でもあるTanasi博士は、3世紀から4世紀にかけて、そこに住むキリスト教徒の人々の食生活と健康をよりよく理解するために、最初この職場で働き始めた。 Tanasi 博士は、フランスの疫学者との共同研究を通じ、リアルタイムPCRを使用して、遺体内の Bartonella quintana DNAを検出した。

毎年、靭帯の損傷により、何千人ものアスリートや一般市民が厳しい状況に置かれている。 回復には時間がかかり、痛みを伴う。また、瘢痕が形成されたために完全に機能が戻らない場合もある。これは、靭帯の損傷がさらに損傷しやすくする要因だ。Stem Cells(2020年11月3日)で発表されたこの新しい エクソソーム ベースの研究は、将来的には歓迎すべき解決策につながる可能性がある。 このオープンアクセスの論文は「エクソソームで教育されたマクロファージとエクソソームが靭帯の治癒を差別的に改善する(Exosome‐Educated Macrophages and Exosomes Differentially Improve Ligament Healing.)」と題されている。この研究は、特定のエクソソームとエクソソームで教育されたマクロファージが、それぞれ靭帯の治癒を促進し、瘢痕を減らす方法を示している。エクソソームは、これまでに研究されたすべての細胞によって放出され、タンパク質や遺伝情報を細胞間で往復させることができる小胞だ。 マクロファージは、通常、微生物を殺して死んだ細胞を取り除く白血球の一種だが、他の免疫系細胞の作用を刺激することもできる。「教育されたマクロファージ」(EEMs:Educated macrophages)は、情報伝達エクソソーム(この場合は間葉系間質細胞MSC由来のエクソソーム)との相互作用によって「教育」されたマクロファージを指す。

半分がRNAで半分が一本鎖DNAであるレトロン(画像)と呼ばれる独特なハイブリッド構造は、多くの種類の細菌に見られる。 約35年前の発見以来、研究者は実験室でDNAの一本鎖を生成するためにレトロンを使用する方法を学んだが、細菌におけるレトロンの機能が何であるかを誰も知らなかった。2020年11月5日に Cell のオンラインで公開された論文で、ワイツマン科学研究所(イスラエル)のチームは、長年の謎を解く報告をしている。 この論文は「アンチファージ防御におけるバクテリアのレトロンの機能(Bacterial Retrons Function in Anti-Phage Defense.)」と題されている。 レトロンは、ウイルスに感染したときに細菌コロニーの生存を保証する免疫システムの番人だ。

COVID-19 に関する喫緊の課題が1つが残っている:免疫はどれくらいの期間持続するか? 免疫の重要な指標の1つは、ウイルス特異的抗体の存在だ。 以前の研究では、感染から回復した人々が潜在的に保護的な抗体を維持できるかどうかについて矛盾する説が提供されていた。ボストンのブリガムアンドウィメンズホスピタルの研究者が主導した新研究では、軽度から中等度のCOVID-19から回復した患者の血液サンプルと細胞を調べ、ウイルスに対する抗体が病気の解消後にほとんどの個人で低下した一方で、患者の一部分が感染後数ヶ月間の持続的な抗ウイルス抗体を産生したことが発見された。これらの持続的な抗ウイルス抗体は症状の経過が短く、COVID-19からより早く回復する人の中には、ウイルスに対するより効果的で耐久性のある免疫反応を開始している可能性があることを示唆している。

繁殖成功度に関連する遺伝的変異を特定した国際研究チームは、自分たちの発見が繁殖能力と不妊の根底にあるメカニズムを浮き彫りにする可能性があると述べた。 さらに、彼らの分析は、現在の選択の下で対立遺伝子を検出し、ヒトで進行中の自然淘汰の性質の洞察を提供するものだ。ペンシルベニア大学の集団遺伝学者であるIain Mathieson博士は、米国人類遺伝学会2020仮想会議でこの研究結果を発表した。 彼のプレゼンテーションは「ゲノムワイド分析がFADS遺伝子座での繁殖成功と進行中の自然淘汰に対する遺伝的影響を特定する(Genome-Wide Analysis Identifies Genetic Effects on Reproductive Success and Ongoing Natural Selection at the FADS Locus)」と題されており、ASHGの朝のセッション「ポリジーン形質とオミクスの自然淘汰」で配信された。「この研究は、繁殖生物学と不妊症との潜在的な関連性に関する興味深いものだ」と、この研究の共著者であるオックスフォード大学(英国)のレバーフルム人口科学センターの所長であるMelinda Mills 博士は述べている。 「しかし、それはまた、多くの分野と数十年に渡り科学者によって尋ねられた最も魅力的で基本的な疑問の1つを経験的にテストするものでもある。つまり、ヒトの継続的な自然淘汰の証拠があるか?もしそうなら、それは何であり、それはどのように機能するのだろうか?」この新研究は、繁殖行動(タイミングと子供の数)の遺伝的基盤と生殖発達に関する以前の研究に基づき、これまでに生まれた子供の数、または子供がいないことについての、個々の遺伝的決定要因を特定するものだ。 研究者らは、ヨーロッパ系の最大785,604人の個人でゲノムワイド関連研究(GWAS)を実施し、これまでに生まれた子供の数または子供がいないことに関連する43の遺伝子座を特定した。これらの遺伝子座は、思春期のタイミング、初産年齢、性ホルモンレベル、性別、閉経年齢など、生涯にわたる繁殖生物学のさまざまな側面にまたがっている。 調査結果は、多様な生物学的メカニズムが繁殖の成功に寄与し、神経内分泌と行動の両方の影響を示唆していることを示している。 最終的に、研究者らは、これが繁殖生物学とおそらく不妊の遺伝的基礎のより良い理解につながると信じている。

COVID-19 のパンデミックは依然として世界中で猛威を振るっているが、アメリカ人類遺伝学会(ASHG)のメンバーは、ウイルスがどのように広がり、人々に感染するか、感受性と重症度に大きなばらつきがある理由を理解し、そして治療の可能性を探すことに取り組んでいる。10月28日水曜日、6人の研究者がASHG 2020仮想年次総会(10月27-30日)で現在のパンデミックに関連するいくつかの最新の研究結果を発表した。この会議には、世界80か国以上から6,000人を超える登録者が参加した。 これらの登録者のうち約1,000人が、「最新のCOVID-19研究アップデート」と題されたこの特別でタイムリーなセッションに参加した。

血液、尿、その他の生体液を循環する無細胞DNA(cfDNA)の短い断片は、人類の生理学や病気に関する豊富な情報を提供する。 cfDNAのメチル化マーカーを調べることで、研究者はDNAの由来組織を特定することが可能だ。新研究では、この方法を使用して、 COVID-19 感染を含む感染症および免疫関連疾患をモニターし、この技術の潜在的な臨床応用を実証している。 コーネル大学生物医学工学の博士課程学生であるAlexandre Cheng氏は、米国人類遺伝学会2020仮想会議(10月27-30日)でこの研究結果を発表した。cfDNA検査はすでに臨床患者のケアに影響を与えている。 たとえば、非侵襲的出生前検査では、cfDNAを使用して胎児の解剖学的または生理学的問題をスクリーニングし、移植拒絶反応を監視するためにcfDNAを評価するための複数の臨床試験が進行中だ。

ジョンズホプキンスブルームバーグ公衆衛生大学院の研究者が共同で主導した新研究によると、性別、年齢、および病気の重症度は、病気から守る高レベルの抗体を持っている可能性が高い COVID-19 生存者を特定するのに役立つ可能性があるという。この調査結果は、入院後にCOVID-19から回復した年配の男性が、COVID-19患者を治療するための血漿を提供する有力な候補であることを示唆している。 医師は、回収されたCOVID-19患者からの血漿(抗体を含む血液の一部)を使用して、COVID-19患者を治療し、またCOVID-19を予防するための予防策として使用している。医師は、はしか、おたふく風邪、ポリオ、エボラ出血熱、さらには1918年のインフルエンザのパンデミック発生時に、回復性血漿を使用して患者を治療したり、ウイルス曝露のリスクが高い人を予防接種したりしている。 COVID-19に対する回復期血漿治療の臨床試験が進行中であり、医師はこれまで、強い抗体反応を示す可能性が高いCOVID-19生存者を選択するためのガイダンスを持っていなかった。「回復期の血漿交換研究のためのドナーの選択を導くために、性別、年齢、および疾患の重症度を使用する必要があることを提案する。これらは、抗体の量だけでなくその抗体の品質を予測する重要な患者の特徴であることが分かったからだ。」とこの研究の筆頭著者であるブルームバーグ校の分子微生物学および免疫学部の教授であるSabra Klein 博士は述べている。2020年8月7日にJournal of Clinical Investigationのオンラインで公開されたこの研究は、ブルームバーグ校の分子微生物学教授のArturo Casadevall博士、共同執筆者のジョンズ・ホプキンス医科大学輸血医学部長で病理学部教授のAaron Tobian 医学博士を含む他のいくつかの研究グループとの共同研究として行われた。 この論文は「COVID-19回復期血漿ドナー集団における性別、年齢、入院による抗体反応の促進(Sex, Age, and Hospitalization Drive Antibody Responses in a COVID-19 Convalescent Plasma Donor Population.)」と題されている。

エクソソーム (細胞外小胞)は、自己免疫疾患や神経変性疾患から癌や組織損傷に至るまで、次世代の治療法として期待されている。 幹細胞に由来するエクソソームは、心臓発作後の心筋細胞の回復を助けることがすでに示されているが、それらの機序や、その有益な効果が幹細胞に由来するエクソソームに特有であるかどうかは謎のままだ。現在、ハーバード・工学/応用科学スクール(SEAS)の研究者は、エクソソームの治癒力の背後にある潜在的なメカニズムを解明し、心臓発作後の細胞を復活させるだけでなく、心臓発作中に酸素を奪われた細胞の機能を維持する能力を実証した。 研究者らは、組織の収縮を継続的に追跡するセンサーを埋め込んだ Heart-On-Chip を使用して、ヒト組織でこの機能を実証した。 チームはまた、これらのエクソソームは、血管の表面を覆い、幹細胞よりも豊富で維持が容易な内皮細胞に由来する可能性があることを実証した。

それは分子スケールでは小さなゲームのように見えるかもしれない。 心筋細胞のフィラメント状タンパク質は、心臓を鼓動させるため完全に協調できるように、正確に同じ長さである必要がある。 別のタンパク質は、フィラメントが適切なサイズであるかどうかを判断し、そこに小さなキャップを付ける。 しかし、そのタンパク質が間違いを犯してキャップを早めに装着してしまうと、別のタンパク質であるレイオモジンがやって来て、キャップを邪魔にならないようにノックする。分子スケールでのこの小さなダンスは取るに足らないように聞こえるかもしれないが、健康な心臓や他の筋肉の発達に重要な役割を果たしている。PLOS Biologyのオンラインで2020年9月8日に公開された論文で、ワシントン州立大学(WSU)の研究チームがこのメカニズムがどのように機能するかを初めて証明した。 この論文は「レイオモジンがアクチンの細いフィラメントの先端に漏れのあるキャップを作製する(Leiomodin Creates a Leaky Cap at the Pointed End of Actin-Thin Filaments.)」と題されている。この発見は将来、タンパク質の遺伝子変異に起因する深刻で時には壊滅的な遺伝性心臓病の診断と治療の改善につながる可能性がある。 これらの状態の1つである心筋症は、世界中の500人に1人が罹患しており、多くの場合、致命的または生涯にわたる健康への影響をもたらす可能性がある。ネマリンミオパチーと呼ばれる同様の状態は、体全体の骨格筋に影響を及ぼし、しばしば壊滅的な結果をもたらす。 「これらのタンパク質の変異は、ミオパチーの患者に見られる」と、WSUの遺伝子およびリンダボイランド化学工学および生物工学部の准教授であり、プロジェクトのリーダーのAlla Kostyukova博士は述べている。 「我々の仕事は、これらの突然変異がこれらの問題を引き起こすことを証明し、治療のための戦略を提案することだ。」心筋は、タンパク質の小さな太いフィラメントと細いフィラメントでできている。 電気信号の助けを借りて、ロープのようなフィラメントは、複雑で正確なアーキテクチャで結合および結合解除され、心筋が収縮して鼓動することを可能にしている。細いフィラメントは、人体で最も豊富なタンパク質であるアクチンでできている。 別のタンパク質であるトロポマイシンは、アクチンフィラメントを包み込む。 トロポミオシンは、他の2つのタンパク質、トロポモジュリンとレイオモジンとともに、アクチンフィラメントの末端で一種のキャップとして機能し、フィラメントの長さを決定する。「それは美しく設計されている」と、タンパク質の構造を理解することに焦点を当てた研究をしているKostyukova博士は語った。また、システムも厳しく規制されている。

どの患者が重症型の COVID-19 を発症するかを正確に予測できるスコアが初めて開発された。 RCSI(アイルランド王立外科医学院)大学の研究者が主導するこの研究は、2020年10月8日にランセットのトランスレーショナルリサーチジャーナルEBioMedicineのオンラインで発表された。 このオープンアクセスの論文は、「インターロイキン-6とインターロイキン-10の比率に基づく線形予後スコアが COVID-19 の転帰を予測する。(A Linear Prognostic Score Based on the Ratio of Interleukin-6 to Interleukin-10 Predicts Outcomes in COVID-19 .”)」と題されている。ダブリン-ボストンスコア(Dublin-Boston score)と呼ばれる測定値は、ステロイドなどの治療法や集中治療室への入院の恩恵を受ける可能性のある患者を特定する際に、臨床医がより多くの情報に基づいた決定を下せるように設計されている。 この研究より前に、臨床的意思決定を導くために利用できるCOVID-19固有の予後スコアはなかった。 ダブリン-ボストンスコアは、最初の4日間の患者の血液を測定した後、7日目に感染がどの程度深刻になるかを正確に予測できる。 この血液検査は、体の免疫系にメッセージを送る炎症を制御する2つの分子のレベルを測定することによって機能する。これらの分子の1つであるインターロイキン(IL)-6は炎症誘発性であり、IL-10と呼ばれるもう一方の分子は抗炎症性だ。 両方のレベルは、重症のCovid-19患者で変化する。 時間の経過に伴うこれら2つの分子の比率の変化に基づいて、研究者は、各1ポイントの増加で、5.6倍より深刻な結果をもたらすポイントシステムを開発した。「ダブリン-ボストンスコアは簡単に計算でき、入院しているすべてのCOVID-19患者に適用できる」と、この研究の筆頭著者でアイルランドのボーモント病院のコンサルタントであるRCSI医学部のGerry McElvaney教授は述べている。 「より多くの情報に基づいた予後は、現在のパンデミック時のリソースの効率的な割り当ての重要な要素であるケアをいつ拡大または縮小するかを決定するのに役立つ可能性がある。スコアは、COVID-19の炎症を軽減するように設計された新しい治療法かどうかを評価する役割も持つ可能性があり、実際に利益をもたらす。」IL-6とIL-10の比率を使用するダブリン-ボストンスコアは、IL-6のみの変化を測定するよりも大幅に優れている。血中濃度が高いにもかかわらず、COVID-19の予後診断ツールとしてIL-6測定のみを使用することは、いくつかの要因によって阻害される。 同じ患者のIL-6レベルは、特定の日の経過とともに変化し、感染に対するIL-6応答の大きさは患者ごとに異なる。ダブリン-ボストンスコアは、RCSI、ハーバード大学、ダブリンのボーモント病院、ボストンのブリガムアンドウィメンズ病院の研究者によって開発された。

DNA構造を修飾し癌や他のいくつかの病気で頻繁に変異しているBAF複合体(哺乳類のSWI / SNF複合体)の前例のない3次元構造モデルが作成された。ダナファーバー癌研究所のCigall Kadoch博士(写真)率いる研究チームは、ヒト細胞から直接精製されたBAF複合体の最初の3D構造の『像』を報告した。 これは実験室で人工的に合成されたのではない。ネイティブの状態で、何千もの癌関連の突然変異を複合体内の特定の場所に空間的にマッピングする機会を提供する。「この複合体が実際に細胞の核内でどのように見えるかについての3D構造モデル、つまり『像』は、今まで捉えどころのないままだった。」とKadoch博士は述べた。

新型コロナ COVID-19 の特徴の1つは、まだ感染の兆候を示していない人が他の人に簡単に感染させる可能性があり、封じ込めが非常に難しいことだ。 ウィルスの保菌者は完全に体調が良く、日常業務に取り掛かる可能性がある。ウィルスを仕事に連れて行ったり、家族のいる家に連れて帰ったり、集会に行ったりする。 したがって、パンデミックの蔓延を食い止めるための世界的な取り組みの重要な部分は、まだ症状が出ていない人々の感染を、迅速に特定できる検査の開発だ。現在、カリフォルニア工科大学の研究者は、医療専門家の関与なしに、少量の唾液や血液の迅速な分析を通じて10分未満でCOVID-19感染の在宅診断を可能にする、低コストのセンサーを備えた新しいタイプの多重化テスト(複数種類のデータを組み合わせたテスト)を開発した。この研究は、カリフォルニア工科大学のAndrew and Peggy Cherng 医用生体工学科の助教授であるWei Gao博士の研究室で実施された。

ペンシルベニア大学医学部の研究チームによって、新しい、希な遺伝的形態の認知症が発見された。 この発見はまた、脳内にタンパク質が蓄積する新しいパスウェイに光を当てるものだ。この新しいパスウェイは、この新たに発見された病気や、アルツハイマー病などの関連した神経変性疾患を引き起こし、新しい治療法の対象となる可能性がある。 この研究は、2020年10月1日にScienceでオンラインで公開された。この論文は「常染色体優性VCPハイポモルフ変異はPHF-タウの分解を損なう(Autosomal Dominant VCP Hypomorph Mutation Impairs Disaggregation of PHF-tau.)」と題されている。アルツハイマー病は、脳の特定の部分にタウタンパク質と呼ばれるタンパク質が蓄積することを特徴とする神経変性疾患だ。

ケルンとヘルシンキの研究チームは、脱毛を防ぐメカニズムを発見した。髪の再生に不可欠な毛包幹細胞は、組織内の低酸素濃度に応じて代謝状態を切り替えることで、寿命を延ばすことができるという。この研究チームは、Sara Wickström准教授(ヘルシンキ大学およびマックス・プランク老化生物学研究所)と皮膚科医のSabine Eming教授(ケルン大学)によって率いられ、ケルン大学の老化研究のCECAD クラスターオブエクセレンス、マックスプランク老化生物学研究所、共同研究センター829「皮膚ホメオスタシスを調節する分子メカニズム」分子医学センター(CMMC)(すべてケルン)、およびヘルシンキ大学の科学者が含まれていた。

コロラド大学ボルダー校主導の研究で、脊椎動物と無脊椎動物を別ける特性は、5億年前の新しい遺伝子セットの出現によって可能となり、新しい遺伝子が脊椎動物の新しい形質の進化において重要な役割を果たしたことを発見した。2020年9月16日にNatureのオンラインで公開されたこの研究成果は、脊椎動物にのみ見られる遺伝子ファミリーが、胚発生時に脊椎動物に特有の頭の骨格やその他の形質を形成するために重要であることを示している。 この論文は「エンドセリン経路の進化が神経堤細胞の多様化を促進した(Evolution of the Endothelin Pathway Drove Neural Crest Cell Diversification.)」と題されている。「すべての動物は、基本的に同じ基本的なレゴブロックのピースの組み合わせを持っている。この論文が示しているのは、脊椎動物にはそれに加えていくつかの特別なピースがあり、それらの特別なピースを特定することだ」と、生態学と進化生物学の准教授で、この論文の上級著者のDaniel Medeiros博士は述べている。脊椎動物のこれらの特別な部分は、「エンドセリンシグナル伝達経路」として知られている。これは、細胞が互いにどのように話すかに影響を与える遺伝子のセットだ。研究者らは、この遺伝子ファミリーが神経堤細胞(骨格部分、色素細胞、末梢神経系などの独特の脊椎動物の特徴に発達する細胞)が増殖し、体全体のさまざまな役割に特化できるようにする役割があることを発見した。進化論は、新しい形質の進化におけるゲノム重複の役割に重きを置いてきたが、それには正当な理由がある。ゲノムが複製されると、既存の遺伝子の新しいコピーが生物の中で新しい役割を担うことができる。しかし、以前のアイデアは主に観察に基づいていたため、Medeiros博士は、遺伝子重複によって脊椎動物が特別なものになる可能性があるかどうか、またはまったく新しい遺伝子の出現が役割を果たす可能性があるかどうかをテストしたいと考えた。

ウイルスは、大気から深海まで、地球上のいたるところに天文学的な数で発生する。 驚くべきことに、ウイルスの豊富さと栄養素の豊富さを考えると、それらを食物として使用する生物は知られていなかった。2020年9月24日、Frontiers in Microbiologyで、生態学的に重要な海洋原生生物の2つのグループであるコアノゾア(画像)とピコゾアンが食作用(つまり、飲み込む)によって獲物(ウイルス)を捕まえるという説得力ある証拠を発表した。このオープンアクセスの論文は「シングルセルゲノミクスが海洋原生生物によって消費されたウイルスを明らかにする(Single Cell Genomics Reveals Viruses Consumed by Marine Protists.)」と題されている。「我々のデータは、多くの原生生物の細胞が細菌ではなく多種多様な非感染性ウイルスのDNAを含んでいることを示しており、これは細菌ではなくウイルスを食べているという強力な証拠だ。これらの調査結果は、海洋食物網におけるウイルスと原生生物の役割に関する現在主流の見解に反しているため、これは大きな驚きだった。」と、米国メイン州イーストブースベイにあるビゲロー海洋科学研究所の単一細胞ゲノミクスセンターの所長である著者のRamunas Stepanauskas 博士は述べている。Stepanauskas博士らは、2009年7月に米国メイン湾の北西大西洋、2016年1月と7月にスペインのカタルーニャ沖の地中海の2つの場所から地表海水をサンプリングした。

男性特有のY染色体遺伝子のあまり知られていない役割に新たな光が当てられ、 COVID-19 を含むさまざまな病気で、男性が女性とは異なる重症化を示すのか理由を説明することができるかもしれない。この研究成果は、モントリオール大学・モントリオール臨床研究所の実験的心臓血管生物学研究ユニットのディレクターであるChristian Deschepper医学博士によって、Scientific Reports の2020年9月10日号で報告された。このオープンアクセスの論文は、「成体マウスの非生殖細胞における隣接するY染色体遺伝子と常染色体mRNA転写物に対するUty / Ddx3y遺伝子座の調節効果(Regulatory Effects of the Uty/Ddx3y Locus on Neighboring Chromosome Y Genes and Autosomal mRNA Transcripts in Adult Mouse Non-Reproductive Cells.)」と題されている。

テルアビブ大学の研究者らによると、遺伝子変異PiZまたはPiSの保因者は、重度の病気や COVID-19 による死亡のリスクが高いことを示唆している。 これらの変異は、重度の感染症の場合に肺組織を損傷から保護するα1-アンチトリプシンタンパク質の欠損に繋がっているという。他の研究では、このタンパク質の欠乏が他の疾患の肺機能への炎症性損傷と関連していることがすでに知られている。 この研究は、テルアビブ大学サックラー医学部のDavid Gurwitz教授、Noam Shomron教授および修士課程候補のGuy Shapira氏が主導し、2020年9月22日にFASEB Journalでオンライン公開された。このオープンアクセスの論文は「アルファ1アンチトリプシン欠損症の対立遺伝子頻度の人種差がCOVID-19致死率の国による差を部分的に説明している可能性がある(Ethnic Differences in Alpha‐1 Antitrypsin Deficiency Allele Frequencies May Partially Explain National Differences In COVID-19 Fatality Rates.)」と題されている。この研究者らは、すべての大陸の67か国からのデータを分析した。 比較により、米国、英国、ベルギー、スペイン、イタリアなどの多くの国で、母集団における2つの突然変異の有病率とCOVID-19 死亡率(母集団のサイズに合わせて調整)との間に非常に有意な正の相関関係があることが明らかになった。 その結果、研究者らは、これらの突然変異が重度のCOVID-19 の追加の危険因子である可能性があることを示唆している。

なぜある種のタランチュラはとても鮮やかな色をしているのだろうか? 科学者らは、色を区別できないと長い間考えられていた夕方と夜間に活動する大きくて毛むくじゃらのクモが、なぜこのように鮮やかな青色と緑色なのかに疑問に感じ、それらが色覚を持っているのではと考えた。イェール-NUS大学(シンガポール)とカーネギーメロン大学(CMU)(米国)の研究者による最近の研究は、新しい仮説を支持している。これらの鮮やかな青色は、仲間間のコミュニケーションに潜在的に使用でき、緑色は葉の間に身を隠すための能力を与えるというものだ。 この研究はまた、タランチュラは以前に信じられていたほど色を区別できないということではなく、これらのクモ類は自分たちの体の明るい青色の色調を知覚できるかもしれないことを示唆している。 このオープンアクセスの論文は、2020年9月23日に英国王立協会紀要Bのオンラインで公開され、最新号(2020年9月30日)の表紙に掲載された。この研究は、CMUのSaoirse Foley博士とVinod Kumar Saranathan博士が共同で主導し、双方ともイェール-NUS大学の科学部門のWilliam Piel博士と共同で行ったものだ。タランチュラの体色の進化的基礎を理解するために、彼らはタランチュラにおけるさまざまなオプシン(通常は動物の目に見られる光感受性タンパク質)の身体的発現を調査した。彼らは、現在の仮定に反して、ほとんどのタランチュラには、ピーコックスパイダーなどの色覚が良好な日中活動性のクモで通常発現されるオプシンのほぼ完全な補体があることを発見した。 これらの発見は、色を区別できないと長い間考えられてきたタランチュラが、他のタランチュラの明るい青色を知覚できることを示唆している。

まるでレンチのように、SWI/SNF(SWItch / Sucrose Non-Fermentable)クロマチンリモデリング複合体は、細胞内のDNAを引き締めたり緩めたりして、タンパク質になるための遺伝子の回転を制御する。これらの複合体は、正しく組み立てられると、正常組織の発達に重要な役割を果たし、壊れると癌の発症につながる可能性がある。通常、これらの複合体はそれらをコードする遺伝子の突然変異によって破壊されるが、これがどのように癌につながるのかはよく解っていなかった。 テキサス大学(UT)サウスウエスタン校 Children's Medical Center Research Institute(CRI)による新研究により、2つの主要なSWI/SNFタンパク質であるARID1AとARID1Bの変異が、どのように起こり、SWI/SNF複合体の集合を破壊することにより、癌の発生を促進するのかが明らかになった。

性染色体の進化は、性決定の根底にあるメカニズムを安定させ、通常は等しい性比をもたらすため、生物学ではとても重要だ。 スウェーデンのウプサラ大学の研究者が率いる国際的な研究チームは、タイセイヨウニシンでオスの性染色体の誕生を再構築することができたと報告している。オス特有の領域は小さく、性決定因子の3つの遺伝子と精子タンパク質の2つの遺伝子しか含まれていない。 この研究は最近PNASで発表された。 性染色体の初期の進化を研究することは困難だ。なぜなら、それは通常大昔に起こり、性決定染色体は通常急速に退化して反復配列を蓄積するからだ。 たとえば、ヒトには性決定のX / Yシステムがあり、Yの存在が男性の性を決定する。1億年以上前に確立されたヒトY染色体は、X染色体と同一の染色体から進化したが、その後Xに存在する遺伝子のほとんどを失い、現在はX染色体の約3分の1のサイズにすぎない。 タイセイヨウニシンにもX / Yシステムがあるが、それは若く、ごく最近に進化した。

欧州内分泌学会(e-ECE 2020)年次総会で発表された研究成果(要約#1044)によると、高齢男性における血中の遊離循環ビタミンDレベルは、総ビタミンDよりも将来の健康リスクのより優れた予測因子である可能性があるという。これらのデータは、血流中を循環していることがわかった遊離の前駆体型ビタミンDが、頻繁に測定される総ビタミンDよりも、将来の健康と病気のリスクをより正確に予測することを示唆している。ビタミンD欠乏症は、次のような複数の深刻な健康状態に関連しているためだ。 この研究は、ビタミンDレベルと高齢者の健康状態の悪化との関連についての更なる研究のための有望な分野であるかもしれないことを示唆している。

Gregory Poore氏がまだ大学の新入生だったとき、彼の祖母が後期段階の膵臓癌にかかっていることを知ってショックを受けた。 この状態は12月下旬に診断され、彼女は1月に亡くなった。 「彼女には事実上、警告の兆候や症状はなかった」とPoore氏は語った。 「なぜ彼女の癌が以前に発見されなかったのか、なぜ彼らが試みた治療に耐性を示したのか誰も説明することができなかった」Poore氏 が大学の研究を通じて学んだように、癌は伝統的にヒトゲノムの疾患と考えられていた:我々の遺伝子の変異は細胞が死を避け、増殖し、腫瘍を形成することを可能にしたと。