ペンシルバニア大学の研究者らは、先天性夜盲症の犬に薄明かりの視力を回復させる遺伝子治療を開発し、人における同様の症状に対する治療に希望をもたらした。先天性定常性夜盲症(CSNB)の人は、薄暗い場所で物を見分けることができない。この障害は、特に人工照明がない場所や夜間の運転時に課題となる。2015年、ペンシルベニア大学獣医学部の研究者らは、犬が人の症状と強い類似性を持つ遺伝性夜盲症を発症する可能性があることを知った。2019年、研究チームは原因となる遺伝子を特定。2022年3月22日、ペンシルベニア大学のチームと同僚らは、CSNBを持って生まれた犬に夜間視力を戻す遺伝子療法という大きな前進を雑誌『Proceedings of the National Academy of Sciences』で報告した。これは、網膜の奥にある「ON双極細胞」と呼ばれる細胞群を標的としたアプローチで、この疾患やON双極細胞の機能が関与する他の視覚障害に対する犬や人の治療法開発の目標に向けた重要な一歩となる。このオープンアクセス論文は「AAV遺伝子療法によるON双極細胞の標的化( Targeting ON-Bipolar Cells by AAV Gene Therapy Stably Reverses LRIT3-Congenital Stationary Night Blindness )」と題されている。遺伝子治療を受けたCSNBの犬は、網膜に健康なLRIT3タンパク質が発現するようになり、薄暗い場所でも迷路を上手に進むことができるようになったのだ。また、この治療法は持続性があり、治療効果は1年以上続くとされている。「このパイロット試験の結果は非常に有望だ。先天性静止型夜盲症の人や犬では、生涯を通じて病気の重症度が一定で変化しない。これらの犬を1歳から3歳の成犬を治療することができた。つまり、理論的には大人になってからでも夜間視力の改善が見られる可能性があるため、今回の発見は人の患者集団にとっても有望であり、関連性が高いと言えるだろう。」と本研究の主執筆者でペンシルベニア大学獣医学科の宮寺恵子助教授(写真)は言う。

シドニーのガーバン医学研究所の研究者とオーストラリア、英国、イスラエルの共同研究者が開発した新しいDNA検査は、既存の検査よりも迅速かつ正確に、診断が困難なさまざまな神経・神経筋遺伝病を特定できることが示された。ガーバン研究所のゲノミクス技術部長であり、本研究の上席著者であるアイラ・デベソン博士は、「ハンチントン病、脆弱X症候群、遺伝性小脳失調症、筋緊張性ジストロフィー、ミオクロニーてんかん、運動ニューロン疾患など、すでに知られていた疾患を持つすべての患者を正しく診断した」と述べている。この検査で対象となる疾患は、ヒト遺伝子の中にある異常に長い反復DNA配列によって引き起こされる50以上の疾患に属し、「ショートタンデムリピート(STR)伸長障害」として知られている。「これらの疾患は、患者が示す複雑な症状、これらの反復配列の困難な性質、および既存の遺伝子検査法の限界のために、しばしば診断が困難だ」とデベソン博士は述べている。2022年3月4日にScience Advances誌にオンライン掲載されたこのオープンアクセス論文は「プログラム可能なターゲット型ナノポアシーケンスによるタンデムリピート伸長型障害の包括的な遺伝学的診断(Comprehensive Genetic Diagnosis of Tandem Repeat Expansion Disorders with Programmable Targeted Nanopore Sequencing)」と題されており、この検査が正確であることを示し、世界中でこの病理学検査を利用できるようにするための検証に取り掛かることについて述べられている。この研究に参加した患者の一人であるジョンは、スキーのレッスン中にバランスをとるのに異変を感じ、初めて異変に気が付いた。「アクティブで動きやすい状態から、支えがないと歩けない状態まで、数年にわたり症状が重くなり、とても心配だった。10年以上も検査に次ぐ検査を受けたが、何が悪いのかまったく分からなかった」と語るジョンは、最終的に、脳に影響を及ぼすCANVASという珍しい遺伝病であると診断された。ジョンは、「近い将来、この種の疾患を持つ人々が、私よりも早く診断を受けられるようになると思うと、胸が高鳴る。」と語っている。この研究の共著者で、コンコード病院の臨床神経科医であるキショア・クマール博士は、「ジョンのような患者にとって、この新しい検査は、負担の大きい診断の旅を終わらせるのに役立つ、画期的なものとなるだろう」と語っている。リピート伸長疾患は、家族間で遺伝する可能性があり、生命を脅かすこともある。また、一般的に筋肉や神経の損傷を伴い、全身にその他の合併症を引き起こす。

アルツハイマー病に罹患した脳を細胞の奥深くまで観察すると、怪しげなタンパク質の塊が見つかるだろう。1980年代に神経科学者がこのタンパク質のもつれを同定し始めて以来、他の脳疾患にも独自のタンパク質のもつれの特徴があることが分かってきた。コロンビア大学ズッカーマン研究所の主任研究員であるアンソニー・フィッツパトリック博士は、「これらの疾患には、それぞれ固有のタンパク質のもつれ、すなわちフィブリルがある。病気に関連するこれらのタンパク質は、独自の形状と挙動を持っている」と述べている。フィッツパトリック博士は、コロンビア大学アービング・メディカルセンターの生化学と分子生物物理学の助教授でもあり、コロンビア大学のアルツハイマー病と加齢脳に関するタウブ研究所のメンバーでもある。このフィッツパトリック博士と22人の国際共同研究者による研究は、2022年3月4日付のCell誌にオンライン掲載され、病気の脳に新しい線維が存在することを明らかにした。このオープンアクセス論文は、「多様な神経変性疾患におけるTMEM106Bのホモ型線維化( Homotypic Fibrillization of TMEM106B Across Diverse Neurodegenerative Diseases )」と題されている。この論文の共同筆頭著者であるフィッツパトリック研究室の学部生アンドリュー・チャン氏は、「我々は、神経変性疾患の管理に何らかの影響を与えることが期待できる、驚くべき刺激的な結果を得た」と語っている。薬物研究者らは、長い間、新薬のターゲットとしてこのタンパク質を追求してきたが、これまでのところ、ほとんど期待はずれの結果しか得られていない。フィブリル関連疾患は、一般的なものと稀なものを合わせて、世界中で何百万人もの人々に影響を与えている。人口の増加や寿命の延長に伴い、その発生率は増加することが予想される。フィッツパトリック博士は、叔父を進行性核上性麻痺(PSP)という病気で亡くしている。「TMEM106Bというタンパク質が線維を形成することを発見した。この挙動はこれまで知られていなかった」と、ザッカーマン研究所のフィッツパトリック研究室の元メンバーで、現在はスタンフォード大学構造生物学部の大学院生であるシャン・シンユ氏は語っている。「このタンパク質は、リソソームとエンドソームの中心的な構成要素で、我々が年を取るにつれて細胞内に蓄積されるゴミを掃除する小器官だ」。 通常、TMEM106B分子は、それらの廃棄物管理小器官の膜にまたがっている。フィッツパトリック博士の研究チームは、実験室での探索の結果、TMEM106B分子が2つの断片に分かれることを発見した。そして、小器官内の断片は自己集合して、細胞を固定するフィブリル(線維)になることができるのだという。

スーパーバグであるクロストリジウム・ディフィシル菌(C. Difficile)の保護鎧の壮大な構造が初めて明らかにされ、鎖帷子のように緊密かつ柔軟な外層が示された。この構造は、分子の侵入を防ぎ、将来の治療法の新しいターゲットになると、この構造を解明した科学者らは述べている。ニューカッスル大学、シェフィールド大学、グラスゴー大学の科学者とインペリアルカレッジ、ダイヤモンド光源研究所の研究者らが、鎖帷子のリンクを形成する主要タンパク質SlpAの構造と、それらがどのように配置されてパターンを形成し、この柔軟な鎧を作り出しているかを概説している。これにより、クロストリジウム・ディフィシル菌に特異的な薬剤を設計して、保護層を破り、分子が侵入して細胞を死滅させるための穴を開けられる可能性が出てきた。2022年2月25日のNature Communicationsに掲載されたこのオープンアクセス論文は「クロストリジウム・ディフィシル菌のS層の構造と組み立て(Structure and Assembly of the S-Layer in C. Difficile)」と題されている。保護鎧

自然免疫系は、宿主と微生物の相互作用を制御し、特に粘膜に侵入した病原体に対する防御に重要な役割を担っている。今回、パスツール研究所とInserm (フランス国立衛生医学研究所)の研究者らは、腸管感染モデルを用いて、自然免疫系エフェクター細胞-グループ3自然免疫系リンパ球が感染の初期段階で作用するだけでなく、再感染時に宿主を保護する自然免疫記憶を発達させるよう訓練できることを明らかにした。この研究は、2022年2月24日のScience誌に掲載された。この論文は「訓練されたILC3応答が腸管防御を促進する(Trained ILC3 responses promote intestinal defense)」と題されている。腸の病気や消化管出血の原因となる大腸菌感染症対策は、公衆衛生上の大きな課題だ。飲料水や食品中に存在するこれらの細菌は、急性腸炎に伴う持続的な下痢を引き起こすことがある。その結果、腸管病原性大腸菌および腸管出血性大腸菌は、世界の小児死亡原因の約9%を占めている。

オックスフォード大学ビッグデータ研究所の研究者らは、人類間の遺伝的関係の全体像、すなわちすべての人の祖先をたどる単一の系図をマッピングするための大きな一歩を踏み出した。この研究は、2022年2月24日付の『Science』誌に掲載された。この論文は「 現代と古代のゲノムの統一的な系図(A Unified Genealogy of Modern and Ancient Genomes)」と題されている。この論文の要点は以下の通りだ:

ノースカロライナ大学(UNC)チャペルヒル校の科学者らは、ヒトの消化管から採取した個々の単一細胞で発現する遺伝子の配列を決定し、新しい細胞型の特徴を発見するとともに、栄養吸収や免疫防御などの重要な細胞機能についての知見を得た。緊張すると腸はそれを感じるかもしれない。唐辛子を食べると腸が反乱を起こすかもしれないが、ある人は何を食べても美味しく感じる。ある人はイブプロフェンを飲んでも何も影響がないが、ある人は腹から出血し、痛みの緩和ができないかもしれない。それはなぜだろうか?その答えは、我々は皆違うからだ。では、具体的にどのように違うのか、そしてその違いは健康や病気に対してどのような意味を持つのか。これらに答えるのは難しいのだが、UNC医科大学のスコット・マグネス博士の研究室では、興味深い科学的な答えを発見した。マグネス研究員は、3人の臓器提供者から採取したヒトの消化管全体を用いて、腸のすべての領域で細胞の種類がどのように異なるか、細胞の機能を明らかにし、これらの細胞間および個人間の遺伝子発現の違いを初めて明らかにしたのである。2022年2月14日にCellular and Molecular Gastroenterology and Hepatology誌にオンライン掲載されたこの研究は、腸の健康の様々な側面を、これまで以上に高解像度でより正確に探求するための扉を開くものだ。この論文は「健康な成人小腸と結腸上皮の近位から遠位までの調査(A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics)」と題されている。

脂肪組織は、人間の健康にとって重要な役割を担っている。しかし、脂肪組織は加齢とともにその機能を失い、2型糖尿病、肥満、癌、その他の病気の原因となる可能性がある。コペンハーゲン大学の研究によると、デンマーク人男性の加齢、運動、脂肪組織機能の関係を調べたところ、生涯にわたって高いレベルの運動をすることで、この劣化に対抗できるようだ。あなたの脂肪はどの程度機能しているのだろうか?あまり聞かれることのない質問だ。しかし、近年の研究によると、脂肪組織(adipose tissue)の機能は、我々の体が年齢とともに衰えていく理由の中心であり、肥満がしばしば発症し、脂肪細胞が年齢とともに機能変化を起こすため、糖尿病2や癌などの人間の病気と強く結びついていることが示唆されている。よって、健康全般は、単に脂肪の量に影響されるのではなく、脂肪組織がいかにうまく機能しているかが重要なのだ。コペンハーゲン大学の新しい研究は、我々の脂肪組織が年齢とともに重要な機能を失うにもかかわらず、大量の運動がより良い方向に大きな影響を与えることを実証している。「全身の健康は、脂肪組織の機能の良し悪しと密接に関係している。かつて、我々は脂肪をエネルギー貯蔵所とみなしていた。しかし、脂肪は他の器官と相互作用し、代謝機能を最適化することができる器官なのだ。特に、脂肪組織は、空腹を感じたときに筋肉や脳の代謝に影響を与える物質を放出するなど、さまざまな働きをしている。だから、脂肪組織が本来の働きをすることが重要なのだ」と、コペンハーゲン大学生物学部のアンデルス・グディクセン助教授(博士)は説明している。

冠動脈疾患を引き起こし、心臓発作を誘発する最も重要な遺伝子が、新たな大規模研究で特定された。ビクター・チャン心臓研究所、ニューヨーク州マウントサイナイ市のアイカーン医科大学、および欧州と米国の他の拠点のチームによるこの研究は、2022年2月1日にCirculation: Genomic and Precision Medicine誌で発表された。このオープンアクセス論文は「冠動脈疾患の原因遺伝子の統合的優先順位付け(Integrative Prioritization of Causal Genes for Coronary Artery Disease)」と題されている。この成果は、冠動脈性心疾患のリスクを有する人々に対する標的治療という、全く新しい分野への道を開くものだ。ビクター・チャン心臓研究所のエグゼクティブ・ディレクターであるジェイソン・コバチッチ教授(医学博士)は、この論文の主執筆者として、この研究は3つの大きなブレークスルーを達成し、そのすべてが心臓病との闘いにおいて重要である、と語っている。「まず、冠動脈性心疾患を引き起こす可能性のある遺伝子をより正確に特定することができた。」「第二に、これらの遺伝子の主な影響が体のどこにあるのかを正確に特定したことだ。心臓の動脈自体が直接閉塞を引き起こすのかもしれないし、肝臓でコレステロール値を上昇させるのかもしれないし、血液中で炎症を変化させるのかもしれない」「3つ目の大きな成果は、冠動脈疾患の原因となる遺伝子(合計162個)を、優先順位の高いものから並べたことだ。」「このリストの上位にある遺伝子の中には、これまで心臓発作との関連で研究されたことのないものもある。これらの新しい重要な遺伝子を見つけることは、本当にエキサイティングなことだが、同時に本当のチャレンジでもある。なぜなら、そのうちのいくつが冠動脈疾患を引き起こすのか、まだ誰も正確に知らないからだ。」とコバチッチ教授は付け加えた。

エボラウイルス感染の非ヒト霊長類モデルを用いた研究で、エボラウイルスは体の特定の場所に留まり、モノクローナル抗体で治療した後でも、再び出現して致命的な病気を引き起こすことがあることが説明された。Science Translational Medicine誌の2022年2月9日号(画像)に掲載されたこの論文は「抗体治療を受けた非ヒト霊長類の脳におけるエボラウイルスの持続性と疾患の再発(Ebola Virus Persistence and Disease Recrudescence in Brains of Antibody-Treated Nonhuman Primate Survivors)」と題されている。論文の主執筆者であるXiankun (Kevin) Zeng博士によると、アフリカで最近発生したいくつかのエボラウイルス病は、以前の発生を免れた患者の持続感染に関連しているとのことだ。特に、2021年にギニアで発生したエボラウイルス病は、少なくとも5年前に発生した大規模なアウトブレイクで持続感染した生存者から再出現したものである。しかし、持続性エボラウイルスの正確な「潜伏場所」や、生存者(特に標準的なモノクローナル抗体治療を受けている人)のその後の再上昇(再発)の基礎となる病態は、ほとんど分かっていなかった。そこで、米陸軍感染症研究所(USAMRIID)のZeng博士のチームは、ヒトのエボラウイルス疾患を最も忠実に再現できる霊長類モデルを用いて、これらの疑問を解決することにした。

マサチューセッツ総合病院(MGH)とブリガム・アンド・ウィメンズ病院(BWH)の研究チームは、mRNAナノ粒子を用いて肝臓癌の腫瘍微小環境を再プログラム化した。この技術は、COVID-19ワクチンに使われているものと同様で、肝臓だけでなく他の種類の癌でも変異している癌抑制因子であるp53マスターレギュレーター遺伝子の機能を回復させた。このp53 mRNAナノ粒子を免疫チェックポイント阻害剤と併用すると、肝細胞癌実験モデルにおいて、腫瘍増殖の抑制を誘導するだけでなく、抗腫瘍免疫反応を有意に増加させることができたという。本研究成果は、2022年2月9日にNature Communications誌のオンライン版に掲載された。このオープンアクセス論文は「p53 mRNAナノセラピーと免疫チェックポイント阻害剤の併用により、癌治療に有効な免疫微小環境が再プログラム化される(Combining p53 mRNA Nanotherapy with Immune Checkpoint Blockade Reprograms the Immune Microenvironment for Effective Cancer Therapy)」と題されている。BWHのナノメディシンセンターの共同研究者であるJinjun Shi博士は、MGHの肝臓癌生物学者で共同研究者のDan G. Duda博士とともに、このプラットフォームを開発した。Shi博士は「この新しいアプローチにより、我々は、mRNAナノ粒子を用いて、腫瘍細胞の特定の経路を標的にしている。この小さな粒子が、細胞にタンパク質を構築する指示を与え、肝細胞癌の場合、腫瘍の成長を遅らせ、免疫療法による治療に腫瘍がより反応するようにした。」と述べている。

オスナブリュック大学(ドイツ)とオゾーガ・チンパンジー・プロジェクトの研究チームは、チンパンジーが自分の傷や仲間の傷に昆虫を塗る様子を初めて観察した。2022年2月7日にCurrent Biology誌のオンライン版で発表されたこの新発見は、「野生チンパンジーの自己および他者の傷に対する昆虫の適用について(Application of Insects to Wounds of Self and Others in Chimpanzees in the Wild)」と題されている。ガボンのロアンゴ国立公園では、オスナブリュック大学のトビアス・デシュナー博士(霊長類学者)とシモーネ・ピカ教授(認知生物学者)が率いるオズーガ・チンパンジー・プロジェクトが実施されている。ロアンゴ国立公園では、約45頭のチンパンジーの社会的関係、他のグループとの交流や争い、狩猟行動、道具の使用、認知・コミュニケーション能力などに重点を置いて、その行動を調査している。「昆虫、爬虫類、鳥類、哺乳類など様々な動物種で、病原体や寄生虫に対抗するために植物の一部や非栄養素を用いるセルフメディケーションが観察されている」「例えば、我々の最も近い近縁種であるチンパンジーとボノボは、駆虫効果のある植物の葉を飲み込み、腸内寄生虫を殺す化学的特性を持つ苦い葉を噛んでいる。」と認知生物学者のピカ博士は述べている。

片頭痛研究の第一人者からなる国際コンソーシアムは、片頭痛のリスクに関連する120以上のゲノム領域を特定した。この画期的な研究により、研究者は片頭痛とそのサブタイプの生物学的基盤の理解を深め、世界中で10億人以上が苦しんでいるこの症状の新しい治療法の探索を加速させることができる。この片頭痛に関する最大規模のゲノム研究では、片頭痛の既知の遺伝的危険因子の数が3倍以上に増加した。今回明らかになった123の遺伝子領域の中には、最近開発された片頭痛治療薬の標的遺伝子を含むものが2つ含まれている。この研究は、ヨーロッパ、オーストラリア、米国の主要な片頭痛研究グループが協力し、873,000人以上の研究参加者(うち102,000人が片頭痛持ち)の遺伝子データをプールした。

遺伝子サイレンシングツールは、生物医学の基礎研究や医薬品開発を前進させる新たな機会を提供する可能性を秘めている。この技術は、通常は遺伝子の活動を抑制する小さなノンコーディングRNA分子の力を利用するものである。ピウィ・インタラクティングRNA(piRNA)として知られるこれらの制御分子は、通常、ゲノム上の寄生体(トランスポーザブル・エレメント)を服従させるのに重要な役割を担っているが、King Abdullah University of Science & Technology(KAUST)の遺伝学者クリスチャン・フロックヤールイェンセン博士と彼の同僚は、このpiRNA経路を利用して、目的の標的遺伝子の活性を意図的に抑制することに成功した。フロックヤールイェンセン博士のチームは、遺伝学研究の一般的な実験モデルである線虫(C. elegans)を用いて、天然のpiRNA機構と相互作用する21文字の合成RNA配列を作成し、目的の遺伝子を不活性化することに成功した。この新しい研究は、2022年2月3日にNature Methods誌にオンライン掲載された。この論文は「C. エレガンスにおける多重世代間遺伝子抑制のためのpiRNA経路の再プログラム(Reprogramming the piRNA Pathway for Multiplexed and Transgenerational Gene Silencing in C. Elegans)」と題されている。

カーティン大学(西オーストラリア州)の研究者は、オーストラリア膵臓癌財団(PanKind)からの資金提供により、膵臓癌の早期発見を最終目的として、癌を運ぶエクソソームの組成を調査することになった。カーティン医科大学のマルコ・ファラスカ教授が率いるこの研究は、血液やその他の体液から発見される、膵臓癌細胞に存在するいわゆるエクソソームに焦点を当てるものだ。ファラスカ教授によると、この研究は最終的に、最も悪性で攻撃性の高い癌の一つである膵臓癌を早期に発見し、早期介入と効果的な薬物療法の開発を可能にすることを目的としている。ファラスカ教授は、「エクソソームと呼ばれる気泡は、癌細胞がコミュニケーションをとるために使用し、癌を広げる手助けをする。腫瘍細胞からのこれらのエクソソームは、膵臓癌の成長と発達に重要な役割を果たしている。膵臓癌に特有のエクソソームによって運ばれる分子を特定することで、それをマーカーとして使うことを目指し、膵臓癌の早期発見に役立つことを意味している。もし、これができれば、早期非侵襲的診断の重要な発展となり、また、より効果的な薬物療法の開発を最終目標とした、これらの分子を不活性化する方法の研究の展望を開くことになるだろう。」と述べている。

カリフォルニア州ラホーヤにあるスクリプス研究所の科学者らは、健康な脳内で常に輸送されている数百種類のタンパク質を小さな膜で囲まれた袋『エクソソーム』内で発見し、脳細胞間の新しいコミュニケーション形態を明らかにした。この研究成果は、2022年1月25日発行のCell Reports誌のオンライン版に掲載され、アルツハイマー病や自閉症を含む神経疾患の理解を深めるのに役立つと期待されている。この論文は「プロテオーム解析により、視覚系における神経細胞間の多様なタンパク質輸送が明らかになった。(Proteomic Screen Reveals Diverse Protein Transport Between Connected Neurons In The Visual System.)」と題されている。スクリプス研究所のハーン神経科学教授であるホリス・クライン博士は、「これは、脳の細胞が互いにコミュニケーションをとる全く新しい方法であり、これまで健康や病気について考える際に組み込まれてこなかったものだ。」「それは、多くのエキサイティングな研究の道を開くものだ。」と述べている。

イスラエルとガーナの研究者チームによる新しい研究は、ヒトの遺伝子に非ランダムな突然変異が起きていることを初めて証明し、環境圧力に対する長期的な方向性のある突然変異反応を示すことで、進化論の中核をなす仮定を覆すものだ。ハイファ大学のアディ・リブナット教授率いる研究チームは、新しい方法を用いて、マラリアから身を守るHbS突然変異の発生率が、マラリアが流行しているアフリカ出身の人々の方が、そうでないヨーロッパ出身の人々より高いことを明らかにした。2022年1月14日にGenome Research誌のオンライン版に掲載されたこの論文は、「適応と遺伝的疾患に関連するヒトHBB遺伝子領域における単一変異分解能でのDe Novo変異率(De Novo Mutation Rates at the Single-Mutation Resolution in a Human HBB Gene-Region Associated with Adaptation and Genetic Disease)」と題されている。「1世紀以上にわたって、進化論の主役はランダムな突然変異に基づいている。今回の結果は、HbS変異がランダムに発生するのではなく、適応的に重要な意味を持つ遺伝子と集団の中で優先的に発生することを示している。」「我々は、進化は2つの情報源の影響を受けると仮定している。すなわち、自然選択である外部情報と、世代を経てゲノムに蓄積され突然変異の起源に影響を与える内部情報だ。」とリブナット教授は述べている。突然変異の起源に関する他の知見とは異なり、特定の環境圧力に対するこの突然変異特異的な反応は、従来の理論では説明できないものだ。

細菌が互いに結合して、協力や競争、高度なコミュニケーションを行う社会組織的なコミュニティを形成していると言うと、最初はSF世界のことのように思えるかもしれない。しかし、バイオフィルム・コミュニティは、病気の原因から消化の助けまで、人間の健康にとって重要な意味をもっている。また、環境保護やクリーンエネルギーの生成を目的としたさまざまな新技術においても、バイオフィルムは重要な役割を担っている。UCLAが主導した新研究は、人体の組織や臓器など、バイオフィルムが形成された表面から有用な微生物を培養したり、危険な微生物を除去したりするのに役立つ知見を科学者に与える可能性がある。この研究は、2022年1月25日にPNAS誌のオンライン版に掲載されたもので、バイオフィルムが形成される際に、バクテリアが無線通信に似た化学信号を使って子孫と通信する仕組みが説明されている。この論文は、「振幅および周波数変調されたc-di-GMPシグナルのブロードキャストにより、バクテリアの系統における協調的な表面コミットメントが促進される(Broadcasting of Amplitude- and Frequency-Modulated c-di-GMP Signals Facilitate Cooperative Surface Commitment in Bacterial Lineages.)」と題されている。

長い冬を食べ物なしで乗り切るために、冬眠する動物(ジュウサンセンジリスなど)は、代謝を99%も低下させるが、冬眠中も筋肉を維持するためにタンパク質などの重要な栄養素は必要だ。ウィスコンシン大学(UW)マディソン校の新しい研究によると、冬眠中のジリスは、腸内の微生物からこの助けを得ていることが明らかになった。この発見は、筋肉が衰弱している人や、宇宙飛行士の長期滞在に役立つかもしれない。2022年1月27日にサイエンス誌のオンライン版に掲載されたこの論文は「冬眠期におけるジリスの腸内共生細菌を介した窒素循環の増加(Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season)」と題されている。「どんな動物でも、運動しない期間が長くなればなるほど、骨や筋肉は萎縮し始め、質量や機能を失ってくる。」「食事性タンパク質が一切入ってこないため、冬眠者は、筋肉が必要とするものを得るための別の方法を必要としている。」と、UWマディソン大学獣医学部の名誉教授で、この新しい研究の共著者、Hannah Carey 博士は語っている。

糖尿病や外傷などにより手足を失った多くの患者にとって、自然再生による機能回復の可能性はまだ手の届かないところにある。足や腕の再生の話は、サンショウウオやスーパーヒーローの世界に留まっている。しかし、タフツ大学とハーバード大学ヴィース研究所の科学者らが、2022年1月26日にScience Advances誌のオンライン版に発表した研究で再生医療の目標に一歩近づいたと述べている。この論文は「ウェアラブルバイオリアクターを用いた急性多剤投与による成体Xenopus laevisの長期的な手足再生と機能回復の促進。(Acute Multidrug Delivery Via a Wearable Bioreactor Facilitates Long-Term Limb Regeneration and Functional Recovery In Adult Xenopus laevis. )」と題されている。手足を再生することができない成体のカエルに、5種類の薬物カクテルをシリコン製の装着型バイオリアクタードームに注入し、24時間密閉することで、失った足を再生させることに成功したのだ。この短期間の治療で、18ヵ月間の再生が始まり、機能的な脚が蘇った。サンショウウオ、ヒトデ、カニ、トカゲなど、多くの生物が少なくとも一部の手足を完全に再生する能力を持っている。ヒラムシは切り刻むと、その断片ごとに生物全体が再生されることさえある。人間は傷口を新しい組織で塞ぐことができるし、肝臓は50%損傷しても元の大きさに再生するという、ほとんどヒラムシのような驚くべき能力を持っている。しかし、大きくて構造的に複雑な四肢、つまり腕や脚を失った場合、人間や他の哺乳類のいかなる自然な再生過程によっても回復させることはできない。実際、人間は大きな怪我をすると瘢痕組織という無定形の塊で覆い、それ以上の出血や感染から保護し、それ以上の成長を妨げる傾向がある。

アラバマ大学バーミンガム校(UAB)Marnix E. Heersink School of Medicineは、遺伝子組み換えされた臨床グレードの豚の腎臓を脳死したヒトに移植し、レシピエントの本来の腎臓に置き換えることに成功したことを概説した初の査読付き論文を発表した。この結果は、世界的な臓器不足の危機に対して異種移植が有効であることを示すものだ。2022年1月20日にAmerican Journal of Transplantationに掲載された論文では、この研究でUABの研究者は遺伝子組み換えブタの腎臓をヒトに移植する初の前臨床モデルをテストしたとしている。この研究のレシピエントは、生まれつきの腎臓を摘出した後、遺伝子組み換え豚の腎臓を2つ腹部に移植された。この臓器は、病原体のない施設で遺伝子組換え豚から調達されたものだ。このオープンアクセス論文は「臨床グレードのブタ腎臓をヒトの遺体モデルで異種移植(First Clinical-Grade Porcine Kidney Xenotransplant Using a Human Decedent Model)」と題されている。

COVID-19の原因ウイルスを含む呼吸器系ウイルスに対して、体が誇張された炎症反応を起こす肺炎を抑止するための情報を、あるウイルスタンパク質が提供している可能性がある。そのウイルスタンパク質とは、呼吸器合胞体ウイルス(RSV)のNS2であり、ウイルスがこのタンパク質を欠く場合、人体の免疫反応は誇張された炎症が始まる前にウイルスを破壊できることが研究で明らかになった。ワシントン州立大学獣医学部で行われたこの研究は、2022年1月18日、MBio誌に掲載された。このオープンアクセス論文は「ヒト呼吸器シンシチアルウイルス NS2タンパク質のBeclin1タンパク質の安定化およびISGylationの調節によるオートファジーの誘導(Human Respiratory Syncytial Virus NS2 Protein Induces Autophagy by Modulating Beclin1 Protein Stabilization and ISGylation)」 と題されている。RSVは、COVID-19の原因となったSARS-CoV-2ウイルスなど他の呼吸器系ウイルスと同様に、ガス交換を担う肺細胞に感染し、その細胞を工場としてさらにウイルスを作り出する。この細胞でのウイルスの増殖が制御できなくなると、細胞が破壊されて激しい炎症が起こり、肺炎などの肺の病気になり、時には死に至ることもあるのだ。この研究を率いたWSUのポスドク研究員、Kim Chiok博士は、「炎症がひどくなると気道が詰まり、呼吸が困難にながる」「これが、このような長期的で重度の炎症反応を持つ人々が、肺炎になって、呼吸の助けを必要とする理由であり、病院でICUに入ることになる理由なのだ。」と述べている。

2022年1月17日、アイルランド王立外科医学校(RCSI)医学・健康科学大学、AMBER、アイルランド科学財団(SFI )先端材料・生体工学研究センターの研究者と、医療技術の大手グローバル企業インテグラライフサイエンス社は、身体自らのプロセスに基づく神経修復治療の新たなブレークスルーを発表した。この研究成果は、2022年1月13日にMatrix Biologyのオンライン版で発表された。このオープンアクセス論文は、「多因子神経誘導導管工学は、炎症、血管新生、大断層神経修復の結果を改善する(Multi-factorial Nerve Guidance Conduit Engineering Improves Outcomes in Inflammation, Angiogenesis and Large Defect Nerve Repair)」と題されている。前臨床研究では、細胞外マトリックス(ECM)を使用することで、追加の細胞や成長因子を適用することなく、大きな神経欠損部において神経線維の再生を改善できることを示した。この前臨床試験において、研究チームが開発した「神経誘導導管」と呼ばれる新しいECM搭載医療デバイスは、組織が大きく失われた外傷性神経裂傷の修復後8週間で、回復反応の改善をサポートすることが明らかにされた。研究チームは、ECMタンパク質の組み合わせと比率を微調整して神経誘導導管に充填することで、標準治療と比較して、修復を促進する炎症の増加、血管密度の増加、再生する神経の密度の増加を支援できることを発見した。この新しいアプローチは、体内の神経修復プロセスを模倣することで、幹細胞や薬物療法を追加する必要性をなくすことができるかもしれない。末梢神経損傷は臨床上の大きな問題であり、毎年世界中で500万人以上が罹患していることが知られており、罹患者は筋肉や皮膚の運動機能や感覚を失うことになる。現在、神経損傷を修復する治療法としては、患者の健康な神経を移植して損傷を修復したり、人工の神経誘導導管を埋め込む方法が用いられている。特許を取得したこの新しい神経修復法は、軸索と呼ばれる長神経構造の再生密度を高め、再生組織をよりよく支える血管密度を強力に増加させることが示されている。この結果について、RCSIの解剖学・再生医学部門に所属する組織工学研究グループとAMBERの筆頭著者であるAlan Hibbitts博士とZuzana Kočí博士は、次のように語っている。「実験室での試験で、我々の神経誘導導管は、移植後8週間で、現在の臨床的なゴールドスタンダードよりも、神経の再生と修復の予後を改善することに成功した。この導管は、神経修復と血管形成の明確な改善をサポートし、最も重要なことは、前臨床試験で非常に大きな神経欠損にアプローチできるように拡張できることを確認した。」この研究の成功について、プロジェクトの主任研究員であり、RCSIの生体工学・再生医学教授、組織工学研究グループ長、AMBER副所長のFergal O'Brien教授は、臨床との関連性を確保し、研究室から患者への道筋を示すためには、RCSI、AMBER、インテグラ社間の連携は不可欠であると述べた。「インテグラのチーフ・サイエンティストであるSimon Archibald博士との共同作業により、この研究には明確な焦点があった。これにより、より直接的に市場投入が可能となり、患者の生活の質を向上させ、より早く現実の世に影響を与えることができるのだ。」

ダナファーバー癌研究所、ハーバード大学、イスラエルの科学者らは、複雑で繊細かつ洗練された驚異のシステムであるヒトの免疫システムに、細菌がウイルスから身を守るために使用する10億年前のタンパク質ファミリーが含まれていることを発見した。この発見は、2022年1月13日付の科学誌Scienceのオンライン版に掲載されたもので、地球上に存在する病気に対する高度な盾である我々の免疫システムの構成要素が、古代の生命体の早い段階で進化していたことを示す最新の証拠である。この研究は、免疫系がすでに存在していた要素を吸収し、何年もの進化を経て、ヒトのように生物学的に複雑な生物の要求を満たすために、それらを新しい方法で利用するようになったことを示している。このScience誌の論文は、「バクテリアのGasderminは、古代の細胞死メカニズムを明らかにする (Bacterial Gasdermins Reveal an An Ancient Mechanism of Cell Death)」と題されている。この研究の主執筆者であるダナファーバーのPhilip Kranzusch博士は、「ヒトの免疫系の機能を理解するために、世界中の研究者は多大な努力を払ってきた。」「ヒトの免疫の重要な部分がバクテリアに共通して存在するという発見は、この分野の研究に新たな青写真を提供するものだ」と述べている。研究の中心となっているタンパク質は、Gasdermin として知られている。細胞が感染したり、癌化したりすると、Gasderminは細胞膜に穴を開け、細胞を死滅させる。この穴から炎症性サイトカインと呼ばれる物質が漏れ出し、感染や癌の存在を知らせて、免疫系が体を守るために結集するよう促すのだ。このプロセスはパイロプトーシス(pyroptosis)と呼ばれ、免疫系が疾患細胞や感染細胞を殺すためのレパートリーの一つである。このプロセスは、よりよく知られているアポトーシスを補完するもので、障害を受けたり感染したりした細胞が自己破壊を行うものである。「パイロプトーシスは、自然免疫系(病原体に対する身体の第一防御ライン)が潜在的脅威に最も早く反応する方法の一つだ」と、この新しい研究の共同筆頭著者であるダナファーバーのAlex Johnson博士は語っている。

体内の免疫系を刺激して腫瘍を攻撃させることは、癌治療の有望な方法だ。腫瘍が免疫系にかけるブレーキを外すこと、そして「アクセルを踏む」こと、つまり免疫細胞をジャンプスタートさせる分子を送り込むことである。しかし、免疫系を活性化させる場合、免疫系を過剰に刺激しないように注意しなければならない。MITの研究者チームは、インターロイキン12(IL-12)と呼ばれる刺激性分子を腫瘍に直接投与する新しい方法を開発し、免疫賦活剤を全身に投与した場合に起こりうる毒性作用を回避することに成功した。マウスを使った研究では、この新しい治療法は、FDAが承認した免疫系のブレーキをかける薬と一緒に投与することで、多くの腫瘍を消失させることができたという。「このIL-12のケース以外にも、何らかの影響を与えることを期待しているし、他の免疫賦活剤のどれにも適用できる戦略だ。」と、MITのコッホ統合癌研究所の副所長であり、MGH、MIT、ハーバード大学のラゴン研究所のメンバーでもあるDarrell Irvine博士は語っている。

カリフォルニア大学デービス校とドイツのマックス・プランク発生生物学研究所、およびその共同研究機関による新しい研究が発表された。この研究成果は、1月12日付のNature誌に掲載され、進化に関する我々の理解を根本的に変えるものだ。また将来的には研究者がより優れた作物を育種したり、人間が癌と戦うのに役立つかもしれない。この論文は「シロイヌナズナの突然変異の偏りは自然淘汰を反映している(Mutation Bias Reflects Natural Selection in Arabidopsis thaliana)」と題されている。突然変異は、DNAが損傷して修復されないまま放置され、新たな変異を生み出す時に起こる。この研究者らは、突然変異が純粋にランダムなものなのか、それとももっと深い意味があるのかを知りたかった。そしてその結果、予想外のことが判明した。

脳は我々の体の中で最も複雑な器官であり、常に周囲の環境を吸収し、解釈し、我々の動作、思考、行動、感情を導いている。人間は、氷は冷たい、火は熱い、ナイフは鋭いなど、周囲の環境を基本的に理解しているが、処理した情報については、一人ひとりが独自の解釈をしているのだ。例えば、全く同じ食事をした後、同じ音を聞いた後、あるいは共有の社会的交流から離れた後、2人の人間は全く異なる反応を示すことがある。脳の神経回路を研究しているボストン大学芸術科学部生物学助教授のJerry Chen博士は、感覚処理、意思決定、学習・記憶などの認知機能を制御する遺伝的・電気的影響の関係をよりよく理解することを目指している。

利用可能なすべてのエビデンスを対象とした最近の系統的レビューによると、ケタミン療法は、うつ病と自殺念慮の症状を軽減する短期的な効果が速やかに得られるとのことだ。このレビューは、エクセター大学が主導し、医学研究評議会の資金援助を受けて行われたもので、83の発表された研究論文から得られたエビデンスを分析したものだ。最も強力なエビデンスは、大うつ病と双極性うつ病の治療におけるケタミンの使用に関するものであった。症状は、1回の治療で1〜4時間という速さで軽減し、最大で2週間持続した。繰り返し投与することで効果が持続することを示唆するエビデンスもあったが、どの程度の期間であれば効果が持続するのかについては、より質の高い研究が必要である。同様に、ケタミンの単回投与または複数回投与により、自殺念慮が中程度から大きく減少した。この改善は、ケタミン投与後、早ければ4時間後に見られ、平均3日間、最長で1週間持続した。

ほとんどの身体機能の制御は、細胞同士の対話能力にかかっている。細胞間のコミュニケーションには、神経系とホルモンの分泌という2つのルートがあることは以前から知られていた。エクソソームとは、細胞が分泌したタンパク質やRNA分子を含む小胞のことで、代謝を調節するために他の細胞に取り込まれることができる。現在、多くの研究者が、マイクロRNAを運ぶエクソソームに注目している。マイクロRNAは非常に短いRNAで、細胞のさまざまなタンパク質を作り、細胞の機能を制御する他の長いRNAの能力を制御することができる。 

炭疽菌は怖いというイメージがある。炭疽菌は人間の肺に深刻な感染症を引き起こし、痛みはないものの醜い皮膚病変を引き起こすことが広く知られており、恐怖の兵器として使われたことさえある。このたびの研究で、この恐ろしい微生物が思いがけない有益な可能性を持っていることが明らかになった。この研究では、この炭疽病菌の毒素が痛みを感知するニューロンのシグナル伝達を変化させ、中枢神経系や末梢神経系のニューロンを標的として投与すると、苦痛を感じている動物に緩和を与えることが明らかにされた。

Weill Cornell Medicineの研究者らによる新しい研究によると、胚発生の最初の1カ月間の脳細胞の複数の変化が、後年の統合失調症に関与している可能性があることが明らかになった。この研究は、2021年11月17日にMolecular Psychiatry誌のオンライン版に掲載された。この研究者らは、統合失調症患者と未病者から採取した幹細胞を用いて、実験室で3次元の「ミニ脳」またはオルガノイドを増殖させた。両者の発生を比較した結果、患者の幹細胞から育てたオルガノイドでは、細胞内の2つの遺伝子の発現低下が初期の発生を妨げ、脳細胞の不足を引き起こしていることを発見した。このオープンアクセス論文は、「統合失調症は、患者由来の脳オルガノイドにおける細胞特異的神経病理と複数の神経発達メカニズムによって定義される(Schizophrenia Is Defined by Cell-Specific Neuropathology and Multiple Neurodevelopmental Mechanisms in Patient-Derived Cerebral Organoids)」と題されている。「今回の発見は、統合失調症に対する科学者の理解における重要なギャップを埋めるものだ 。」と、筆頭著者であるWeill Cornell MedicineのFeil Family Brain and Mind Institute and the Center for Neurogeneticsの神経科学助教授Dilek Colak博士(写真)は述べている。統合失調症の症状は一般的に成人してから発症するが、この病気の患者の脳を死後調査したところ、脳室と呼ばれる空洞の拡大や皮質層の違いが見つかり、これらはおそらく人生の早い時期に生じたものであると考えられている。

ノースウェスタンメディシンの研究者が、患者の脳脊髄液(CSF)内に自閉症の1つのタイプのバイオマーカーを発見したと発表した。2021年12月17日にNeuron誌にオンライン掲載されたこの研究論文は、「CSFで検出される Shed CNTNAP2 Ectodomain はPMCA2/ATP2B2を介してCa2+の恒常性とネットワークの同期を制御する。(Shed CNTNAP2 Ectodomain Is Detectable in CSF and Regulates Ca2+ Homeostasis and Network Synchrony Via PMCA2/ATP2B2)」と題されている。ノースウェスタン大学のRuth and Evelyn Dunbar教授(精神医学・行動科学)、Peter Penzes博士(神経科学・薬理学)は、このバイオマーカーの存在により、自閉症とてんかんの関連性を明らかにすることができると述べている。ノースウェスタン大学医学部の自閉症・神経発達研究センター長でもあるPenzes博士(写真)は、「脳内では興奮が強すぎ、抑制が弱すぎることが、自閉症とてんかんの両方に影響を与える可能性がある」「脳脊髄液に自閉症のバイオマーカーがあるという報告は今回が初めてだ。」と述べている。

紙によるささいな切り傷が、激しい活動の場となる。そこでは表皮の幹細胞が勢いよく再生され、傷を修復している。この表皮幹細胞の中には、その部位にもともと存在するものもあれば、傷口を感知して毛包から傷口に移動し、本来の表皮幹細胞のように変化した新参者もあることがわかっている。毛包から皮膚表面に移動した幹細胞は、その遺伝子の中に、毛包から皮膚表面に移動し、傷ついた皮膚を修復し、最後に新しい場所に適応するための記憶を保持していることが明らかになった。これらの幹細胞は、未熟な表皮幹細胞とほとんど見分けがつかない。しかし、2021年11月26日号のScience誌に掲載された新しい研究によると、彼らは傷を早く治すための下準備ができており、傷を繰り返すうちに、慢性疾患や癌につながるような記憶を身につける可能性があることが示唆された。この論文は「幹細胞は多様なエピジェネティック記憶を蓄積することで潜在能力を拡大し、組織のフィットネスを変える(Stem Cells Expand Potency and Alter Tissue Fitness by Accumulating Diverse Epigenetic Memories)」と題されている。ロックフェラー大学のElaine Fuchs博士(本研究の主著者)は、「毛包由来表皮幹細胞は、通常の表皮幹細胞と同じように見える。」「しかし、その移動の記憶と、強化された可塑性が、結果をもたらしている。」と述べている。

マウスを使った新しい研究で、褐色脂肪を移植すると心臓発作後の2型糖尿病の危険因子を低減できることが示された。この発見は、いわゆる「良い」脂肪の有益な特性を、健康問題の予防に役立つ医薬品に応用したいと考えている科学者にとって心強いものだ。この研究では、肥満マウスの腹部に褐色脂肪組織を移植することで、軽度の心臓発作後に2型糖尿病の特徴である耐糖能異常を発症するのを防いだ。また、心臓発作後の悪影響につながる遺伝子の活性化が、移植したマウスでは抑制された。このことから、褐色脂肪組織は体内の他の組織と「対話」し、さまざまな代謝関連プロセスに影響を与えていることが示唆された。研究チームは、このクロストークの背後にある物質やメカニズム、そしてそれが全身の生理機能にどのような影響を及ぼすのかについて、引き続き解明を進めていく予定である。

2021年12月14日、エイジックス・セラピューティクス社(AgeX Therapeutics, Inc. (以下「AgeX」、NYSE American:AGE)は、癌化学療法や放射線療法による脳機能への神経認知への悪影響に対する治療法の開発を目的として、AgeX多能性幹細胞由来の神経幹細胞が生成するエクソソームやその他の細胞外小胞(EVs)の治療可能性について、カリフォルニア大学アーバイン校(UCI)と共同研究することを発表した。この研究プロジェクトは、何百万人もの癌サバイバーのQOLに影響を与える、アンメットメディカルニーズに応えることを目的としている。AgeX社とカリフォルニア大学の契約は、UCI Beall Applied Innovationのチームが担当した。UCIでは、UCI幹細胞研究センターの准教授であるMunjal Acharya博士の指導のもと、研究が行われる。Acharya博士は過去10年間、再生医療および癌治療による脳損傷の分野で研究を行ってきた。現在、Acharya博士の研究室では、放射線誘発性脳損傷の分子・細胞メカニズム、アルツハイマー病の再生治療、ケモブレインの研究を行っている。

テネシー州ナッシュビルにあるバンダービルト大学医療センター(VUMC)の研究者らは、複数の癌、心血管疾患、アルツハイマー病、さらにはCOVID-19に関連する酵素、タンパク質、RNAを含む「スーパーメア (Supermere)」と呼ばれる細胞から放出されるナノ粒子を発見した。この発見は、2021年12月7日にNature Cell Biology誌のオンライン版で報告され、健康と病気の両方において、細胞外小胞(EV)とナノ粒子が細胞間の重要な化学的「メッセージ」のシャトリングに果たす役割の理解に大きな前進をもたらすものである。このオープンアクセス論文は「スーパーメア は、疾患バイオマーカーと治療標的を豊富に含む機能性細胞外ナノ粒子(Supermeres Are Functional Extracellular Nanoparticles Replete with Disease Biomarkers and Therapeutic Targets)」と題されている。この論文の筆頭著者であるRobert Coffey医学博士は、「我々は、癌やその他の多くの疾患状態において、これらの スーパーメア に含まれるバイオマーカーや治療標的を多数同定した。今、残されているのは、これらがどのように放出されるのかを解明することだ。」と述べている。

1型糖尿病患者において、移植した細胞からインスリンが分泌されることを証明した多施設共同臨床試験の中間結果が発表された。ヒト多能性幹細胞(PSC)由来の膵臓内胚葉細胞(代表画像)を移植し、26名の患者を対象に、安全性、忍容性、有効性を検証した。インプラントから分泌されたインスリンが患者に臨床効果をもたらすことはなかったが、本データは、ヒト患者において分化した幹細胞が食事によりインスリン分泌を制御していることを示す初めての報告となる。この成果は、2021年12月2日、Cell Stem CellおよびCell Reports Medicineのオンライン版に掲載された。Cell Stem Cellの論文は「幹細胞を用いた糖尿病における膵島置換療法。臨床に至るまでの道程(Stem cell-Based Islet Replacement Therapy In Diabetes: A Road Trip That Reached the Clinic)」と題されている。またCell Reports Medicineの論文は「(Insulin Expression and C-Peptide in Type 1 Diabetes Subjects Implanted with Stem Cell-Derived Pancreatic Endoderm Cells in an Encapsulation Device)」と題されている。

「腫瘍の内側だけでなく、外側も見なければならない」と、スペイン国立癌研究センター(CNIO)のHéctor Peinado研究員(写真)は語った。腫瘍がどのように環境を操作して前進するのか、Peinado博士が長年答えを出そうとしている大きな疑問の一つである。何十年もの間、腫瘍と戦うために、研究者は腫瘍の本質的な行動を研究することに重点を置いてきたが、腫瘍を取り巻く環境については研究してこなかった。Peinado博士は、CNIOの微小環境・転移グループのリーダーで、腫瘍から放出されるエクソソームと呼ばれるナノ粒子が、どのように腫瘍の微小環境を操作して転移を促進させるかなど、転移進行に関わるメカニズムについて研究している。2021年11月25日にNature Cancer誌にオンライン掲載された論文では、メラノーマの進行に重要なこのプロセスがどのように起こるかが説明されている。エクソソームは、最初に転移が起こるリンパ節であるセンチネルリンパ節に移動し、そこから転移に適した環境(pre-metastatic niche)を遠隔的に準備するのだ。

脳の一部である海馬の神経細胞の細胞体に見られる不思議なタンパク質の集団に、現在、カリフォルニア大学デービス校医学部の生理学・膜生物学特別教授であるJames Trimmer博士(写真)は、30年間興味をそそられ困惑させられていたが、ついにその答えを得ることができた。Trimmer博士らは、2021年11月16日にPNAS誌に発表した新しい研究で、これらのタンパク質クラスターが神経細胞内のカルシウムシグナル伝達の「ホットスポット」であり、遺伝子転写の活性化に重要な役割を果たしていることを明らかにした。PNAS誌に掲載されたこの論文は「小胞体-小胞体結合部におけるL型カルシウムチャネルのKv2.1誘導クラスター化による神経細胞の興奮-転写結合の制御(Regulation of Neuronal Excitation-Transcription Coupling by Kv2.1-Induced Clustering of Somatic L-Type Ca2+ Channels at ER-PM Junctions)」と題されている。

大人の脳の視覚野には、顔に特化した小さな領域と、体や風景などの情景に強いこだわりを持つ領域が存在する。これまで神経科学者らは、子供のうちにこれらの領域が発達するには、何年もの視覚体験が必要であると考えてきた。しかし、マサチューセッツ工科大学(MIT)の新しい研究によると、これらの領域はこれまで考えられていたよりもずっと早い時期に形成されることが示唆された。生後2カ月から9カ月の乳児を対象とした研究では、乳児の視覚野の中に、大人と同じように、顔、体、風景のいずれかに強い選好性を示す領域が確認された。「これらのデータは、これまでの発達のイメージを覆すものであり、乳児の脳は、我々が考えていたよりも早く、さまざまな点で大人に似ていることがわかった」と、MITのマクガバン脳研究所に所属する、本研究の上席著者のRebecca Saxe博士は述べている。

NIH長官のFrancis Collins医学博士は、2021年11月12日のディレクターブログで、MITのコッホ統合癌研究所所長であるTyler Jacks教授とMITの研究者であるMegan Burger博士が同僚と共に行ったT細胞の疲弊に関する研究が、「T細胞を "覚醒"させ、身体が本来持っている癌と闘う力を再活性化させることができる癌ワクチンを開発するための戦略」の構築につながったことを紹介した。Collins博士は、「この研究者らは、この癌ワクチンのアプローチが、他の方法で癌に対する免疫システムを解放する免疫療法薬と併用することで、さらに効果を発揮するかどうかを知りたいと考えている。」 と書いている。以下は、Collins博士のブログの内容だ。彼は、Burger博士とJacks博士らが2021年9月16日発行のCell誌に掲載した最近の論文について説明している。この論文は、「腫瘍におけるTCF1+前駆CD8 T細胞の表現型を形成する抗原優位性のヒエラルキー(Antigen Dominance Hierarchies Shape TCF1+ Progenitor CD8 T Cell Phenotypes in Tumors)」と題されている。

ノースウェスタン大学の研究者らは、「踊る分子」を利用して、重度の脊髄損傷後の麻痺を回復させ、組織を修復する新しい注射療法を開発した。2021年11月11日発行のScience誌に掲載された今回の研究では、麻痺したマウスの脊髄周辺の組織に注射を1回打った結果、わずか4週間後には、歩く能力が回復したという。この論文は 「超分子運動を強化した生物活性スキャフォールドが脊髄損傷からの回復を促進する(Bioactive Scaffolds with Enhanced Supramolecular Motion Promote Spinal Cord Injury)」と題されている。この画期的な治療法は、細胞が修復・再生するきっかけとなる生物活性シグナルを送ることで、重度の損傷を受けた脊髄を以下の5つの点で劇的に改善した。

ロックフィッシュは環太平洋地域のメニューに登場するが、ほとんどの場合、その魚の産地や137種のうちのどの魚かを気にすることなく、単にロックフィッシュと呼ばれたり、間違ってロックコッドやレッドスナッパーと呼ばれたりしている。しかし、この一見無名の魚は、地球上の脊椎動物の中で最も長寿であることから、寿命を決定する遺伝子や、長生きすることのメリット・デメリットを知る手がかりとなる。カリフォルニア大学バークレー校の生物学者らは、2021年11月11日付のScience誌に掲載された研究で、太平洋沿岸に生息する既知のロックフィッシュの約3分の2の種のゲノムを比較し、寿命が大きく異なる原因となる遺伝子の違いを明らかにした。Science誌に掲載されたこの論文は、「太平洋のロックフィッシュ類における極端な寿命の起源と進化(Origins and Evolution of Extreme Life Span in Pacific Ocean Rockfishes)」と題されている。色鮮やかなカラフトメバル(Sebastes dallii)のように、10年程度しか生きられないロックフィッシュもいれば、日本からアリューシャン列島まで生息するロックフィッシュの中で最も長寿なルージェイメバル(Sebastes alutianus)は、寒くて深い沿岸水域の海底で200年以上も生きられる。

非アルコール性脂肪性肝疾患(NAFLD)は、アルコール依存症や他の肝疾患とは無関係に肝臓に脂肪が蓄積される疾患だ。非アルコール性脂肪性肝疾患(NAFLD)は、アルコール依存症や他の肝疾患とは無関係に肝臓に脂肪が蓄積する疾患で、肥満や糖尿病と関連することが多く、メタボリックシンドロームの一つと考えられている。非アルコール性脂肪性肝炎(NASH)は、炎症を起こすことで進行するが、そのメカニズムは現在のところ不明だ。NASHは、肝不全、肝硬変、肝癌などの重篤な合併症を引き起こす可能性がある。今回、筑波大学を中心とする研究チームは、チロシナーゼ遺伝子に点変異を持つアルビノマウスが、変異のない遺伝子を持つマウスよりもNAFLD/NASHに罹患しやすいことを発見した。2021年11月8日にScientific Reportsのオンライン版に掲載されたこのオープンアクセス論文は「チロシナーゼ遺伝子座の点変異を有するアルビノマウスは、高コレステロール食によりNASHに罹患しやすい(Albino Mice with the Point Mutation at the Tyrosinase Locus Show High-Colesterol Diet-Induced NASH Susceptibility)」と題されている。

神経細胞は、カリウムやナトリウムなどのイオンの流れを制御するイオンチャネルによって生成される電気インパルスを介して相互に通信している。今回、MITの神経科学者らは、他の哺乳類の神経細胞と比較して、ヒトの神経細胞にはこれらのチャネルの数が予想よりもはるかに少ないという驚くべき新事実を発見した。研究者らは、このチャネル密度の低下により、ヒトの脳がより効率的に機能するように進化し、複雑な認知タスクを実行するために必要な他のエネルギー集約型プロセスに資源を振り向けることができるようになったのではないかと考えている。「脳がイオンチャネルの密度を減らすことでエネルギーを節約できれば、そのエネルギーを他の神経細胞や回路のプロセスに費やすことができる」と、MITのマクガバン脳研究所に所属する脳・認知科学准教授で、本研究の上席著者であるMark Harnett博士は述べている。2021年11月10日にNatureのオンライン版に掲載されたこの論文は、「哺乳類大脳皮質第5層ニューロン生物物理学のアロメトリックルール(Allometric Rules for Mammalian Cortical Layer 5 Neuron Biophysics)」と題されている。

1800年代、3つの言語が刻まれた古代の岩板「ロゼッタ・ストーン」は、エジプトの象形文字を解読するのに役立った。今、あるコンピュータープログラムが、遺伝暗号に対して同様のことを行っている。「Codetta」と名付けられたこのプログラムは、あらゆる生物のゲノム配列を読み取って、その遺伝コードを吐き出すことができる。遺伝情報をタンパク質を作るための命令に変換する生物学的な鍵である。生命の木の大部分において、このコードは普遍的である。しかし、一部の生物では、遺伝情報が他の生物とは異なる命令をコードしているという例外が見つかっている。ハーバード大学の大学院生、Kate Shulgina氏とハワード・ヒューズ・メディカル研究所の研究員、Sean Eddy博士は、これまでにない5つのコードを発見したことを、2021年11月9日付の学術誌eLifeで報告した。「Kateには、彼女の新しいコードがそのまま教科書に載ると伝えた」とEddy博士は語った。このeLife誌に掲載された論文は「25万以上のゲノムにおける代替遺伝暗号の計算機的スクリーニング(A Computational Screen for Alternative Genetic Codes in Over 250,000 Genomes)」と題されている。

ファイザー社 (NYSE: PFE)は、重症化のリスクが高い非入院の成人COVID-19患者を対象としたフェーズ2/3 EPIC-HR(Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients)無作為化二重盲検試験の中間解析結果に基づき、治験薬であるCOVID-19経口抗ウイルス剤候補のPAXLOVID™が入院および死亡を有意に減少させたことを発表した。予定されていた中間解析では、症状発現後3日以内に治療を受けた患者において、COVID-19に起因する入院またはあらゆる原因による死亡のリスクが、プラセボと比較して89%減少したことが示された(主要評価項目)。PAXLOVID™を投与された患者のうち、無作為化後28日目までに入院した患者は0.8%(3/389人が入院し、死亡はなし)であったのに対し、プラセボを投与された患者のうち、入院または死亡した患者は7.0%(27/385人が入院し、7人がその後死亡)であった。これらの結果の統計的有意性は高かった(p<0.0001)。COVID-19に関連した入院または死亡は、症状発現後5日以内に治療を受けた患者においても同様の減少が認められた。PAXLOVID™の投与を受けた患者のうち、無作為化後28日目までに入院したのは1.0%(入院したのは6/607人、死亡はなし)であったのに対し、プラセボの投与を受けた患者では6.7%(入院したのは41/612人、その後の死亡は10人)であり、高い統計的有意性が認められた(p<0.0001)。28日目までの全試験集団において、PAXLOVID™を投与された患者では死亡例がなかったのに対し、プラセボを投与された患者では10例(1.6>#/span###)の死亡例が報告された。

Research Indicates How the Novel Coronavirus Escapes Cell’s Antiviral Defensesブリティッシュコロンビア大学(UBC)を中心とする研究チームは、COVID-19の原因ウイルスが感染した細胞内で破壊を免れ、SARS-CoV-2が体内に留まり、拡散し続ける仕組みを解明した。この発見は、新型コロナウイルスが起こした細胞内クーデター、すなわち、正常な細胞の防御機能を破壊してヒトの宿主細胞を乗っ取る方法を説明するものである。「我々は、ウイルスが宿主細胞内の重要なセンサータンパク質であるガレクチン-8に付着し、その働きを停止させることを発見した。SARS-CoV-2は、ガレクチン-8を不活性化することにより、細胞の抗ウイルス防御システムを停止させ、ウイルスが宿主を乗っ取ることを可能にするのだ」と、本研究の上席著者であり、カナダリサーチチェア、UBC血液研究センター、生命科学研究所、歯学部の主任研究員であるChris Overall博士は語る。Overall博士は、地元、国内、海外の協力者を集めて本研究のためのサンプルを提供した。この研究は2021年10月26日発行のCell Reports誌に掲載された。本研究の共同著者であるIsabel Pablos博士とYoan Machado博士は、共にOverall博士の研究室のポスドクだ。このCell Reports誌に掲載されたオープンアクセス論文は、「SARS-CoV-2 3CLpro基質分解物のグローバル分析によるCOVID-19の機構解明(Mechanistic Insights into COVID-19 by Global Analysis of the SARS-CoV-2 3CLpro Substrate Degradome)」と題されている。SARS-CoV-2は、宿主の細胞をウイルス生産マシンに変えるために、ウイルスの外側を取り囲むスパイクタンパク質を用いて、宿主に付着し、侵入し、制御権を握る。

la Caixa財団が支援するバルセロナ国際保健研究所(ISGlobal)主導の新研究により、COVID-19は季節性インフルエンザと同様に、低温と湿度に関連した季節性感染症であることが確実に証明された。この結果は、2021年10月21日にNature Computational Science誌のオンライン版に掲載され、空気感染によるSARS-CoV-2の感染がかなり寄与していること、そして "空気の衛生"を促進する対策に移行する必要性も支持している。このオープンアクセス論文は、「両半球におけるCOVID-19パンデミックウェーブの気候的特徴(Climatic Signatures in the Different COVID-19 Pandemic Waves Across Both Hemispheres)」と題されている。 

中国科学院プロセス工学研究所(IPE)の研究者らは、癌免疫療法を支援するために、免疫反応と腫瘍微小環境を共同で活性化するマクロファージと腫瘍のキメラ型エクソソームを開発した。この研究は、Science Translational Medicine誌のオンライン版に2021年10月13日に掲載された。この論文は、「マクロファージと腫瘍のキメラ型エクソソームがリンパ節と腫瘍に蓄積し、免疫反応と腫瘍微小環境を活性化する(Macrophage-Tumor Chimeric Exosomes Accumulate in Lymph Node and Tumor to Activate the Immune Response and the Tumor Microenvironment)」と題されている。腫瘍細胞と闘うために免疫システムを強化または利用する癌免疫療法は、大きな期待が寄せられている。癌免疫療法の多くは、免疫細胞を大量に産生することに基づいている。しかし、これらの免疫細胞の機能は、固形癌における免疫抑制的な微小環境によって常に損なわれている。

ラトガース大学の研究者らは、モーションセンサー付きのスニーカーを履いた人の微細な動きを調べることで、自閉症や健康問題に関連する遺伝性疾患「脆弱性X症候群」と「SHANK3欠失症候群」を歩行パターンと関連付けることに成功した。2021年10月22日にScientific Reports誌のオンライン版に掲載されたこの方法は、臨床診断の15~20年前に歩行障害を検出するもので、脳の構造と機能を維持するための介入モデルの開発に役立つ可能性がある。このオープンアクセス論文は、「因果関係予測モデルの最適なタイムラグが神経系病理の層別化と予測に役立つ(Optimal Time Lags from Causal Prediction Model Help Stratify and Forecast Nervous System Pathology)」と題されている。ラトガース大学ニューブランズウィック校の心理学教授であり、同大学の感覚運動統合研究室の室長であるElizabeth Torres博士は、「歩行パターンは健康状態を示す特徴の一つだが、脆弱性Xのような疾患の歩行症状は、目に見える形で現れるまで何年も肉眼では見えないことがある」「手足が長い、短いなどの解剖学的な違いや疾患の複雑さなどの問題があるため、歩行パターンを用いて、年齢や発達段階の異なる人々に影響を与える神経系疾患を広くスクリーニングすることは困難であった」と述べている。

進化生物学において、1950年代に提唱された「生活史理論」は、環境が整っているときには、生物が使用する資源は成長と繁殖に充てられるとしている。逆に、敵対的な環境下では、エネルギーの節約や外部からの攻撃に対する防御など、いわゆる維持プログラムに資源が振り向けられる。ジュネーブ大学(UNIGE)の科学者らは、この考えを、自己免疫疾患の原因となる免疫系の異常な活性化という特定の医学分野に発展させた。研究チームは、多発性硬化症のモデルマウスを用いて、寒さにさらされた生体が、免疫系から体温維持に資源を振り向ける仕組みを解明した。実際、寒さの中では、免疫系の有害な活動が減少し、自己免疫疾患の進行が大幅に抑制された。この結果は、Cell Metabolism誌の表紙を飾っており、エネルギー資源の配分に関する生物学的な基本概念に道を開くものである。この研究論文は、2021年10月22日にオンライン公開され、「寒冷環境下での免疫系リプログラミングによる神経炎症の抑制 (Cold Exposure Protects from Neuroinflammation Through Immunologic Reprogramming)」と題されている。自己免疫疾患は、免疫系が自分の体の器官を攻撃することで起こる。例えば、1型糖尿病は、インスリンを分泌する膵臓細胞が誤って破壊されることで起こる。多発性硬化症は、中枢神経系(脳と脊髄)の最も一般的な自己免疫疾患だ。この病気は、神経細胞を保護するミエリンが破壊されることが特徴で、ミエリンは電気信号を正しくかつ迅速に伝達するために重要な役割を果たしている。ミエリンが破壊されると、麻痺などの神経障害が生じる。

モザンビーク内戦(1977年~1992年)で象牙の密猟が激しく行われた結果、アフリカゾウのメスは個体数が激減する中で牙を持たなくなり、その結果、密猟を受けても生き残る可能性が高い表現型になったとプリンストン大学の研究者らは報告している。今回の研究成果は、人為的な捕獲が野生動物の個体群に及ぼす強力な選択力に新たな光を当てるものだ。食用や安全のため、あるいは利益のために、生物種を選択的に殺すことは、人類の人口や技術が増加するにつれ、より一般的で激しくなってきている。そのため、人間による野生動物の利用は、対象となる種の進化において強力な選択的推進力となっていることが示唆されている。しかし、その結果、どのような進化を遂げたのかは、まだ明らかになっていなかった。本研究成果は、2021年10月22日発行のScience誌に掲載された。このオープンアクセス論文は、「象牙密猟とアフリカ象における無牙の急速な進化(Ivory Poaching and the Rapid Evolution of Tusklessness in African Elephants)」と題されている。

このたび、ニューヨーク大学(NYU)ランゴーン・ヘルスでは、遺伝子操作された人間以外の腎臓を人体に移植する研究が初めて行われた。これは、生命を脅かす病気に直面している人々が、代替の臓器を利用できる可能性を示す大きな一歩となる。異種移植として知られるこの手術は、2021年9月25日(土)にニューヨーク大学ランゴン校のキンメル・パビリオンで行われた。この2時間に渡る手術は、ニューヨーク大学ランゴン校の外科学教授兼外科学部長であるRobert Montgomery医学博士、ニューヨーク大学ランゴン移植研究所の所長を務めるH.Leon Pachter医学博士が外科チームを率いた。腎臓は、数百マイル離れた場所で遺伝子操作された豚から入手し、脳死状態のドナーに移植された。このドナーは、家族の同意のもと、54時間にわたって人工呼吸器を装着され、医師は腎臓の機能を調べ、拒絶反応の兆候を観察した。手術後、腎臓の機能を示す主要な指標は正常であり、人間の腎臓移植で見られるレベルであった。

バージニア・コモンウェルス大学の研究者Arun Sanyal博士(MD)が主導する縦断的な全国調査によると、肥満、糖尿病、および関連する障害によって肝臓の瘢痕化が進んだ人々が、肝臓疾患で死亡していることが明らかになった。この研究結果は、2021年10月21日発行のニューイングランド・ジャーナル・オブ・メディシン誌に掲載され、特に2型糖尿病を持つ人々の肝臓疾患の検査に新たな緊急性をもたらすとともに、非アルコール性脂肪性肝疾患の将来的な治療法のロードマップを作成し、疾患が進行した人々の肝臓移植を防ぐことを目指している。NEJM誌に掲載されたこの論文は、「成人の非アルコール性脂肪性肝疾患の予後に関する前向き研究(Prospective Study of Outcomes in Adults with Nonalcoholic Fatty Liver Disease)」と題されている。VCUヘルスの肝臓病専門医であるSanyal博士は、「この研究は、非アルコール性脂肪性肝疾患患者の転帰の真の割合を初めて明確に示したものだ。」「この研究は、米国糖尿病協会が最近発表した、肝臓疾患のスクリーニングを開始するというガイドラインに歯止めをかけ、スクリーニングをより主流にするものだ」と述べている。

これまでで最大規模のうつ病の遺伝子解析(2021年5月27日現在)において、米国退役軍人局(VA)の研究者は、うつ病のリスクを高める多くの新しい遺伝子変異を特定した。この画期的な研究は、研究者がうつ病の生物学的基盤をより深く理解するのに役立ち、より良い薬物治療につながる可能性がある。本研究では、VAのミリオンベテランプログラム(MVP)の参加者30万人以上と、23andMeを含む他のバイオバンクの100万人以上の被験者の遺伝子データを使用した。このような大規模な参加者プールにより、研究者らは、これまで知られていなかったうつ病の遺伝的リスクの傾向を見出すことができた。共同研究者のJoel Gelernter博士(VA Connecticut Healthcare Systemおよびイェール大学医学部の研究者)は、今回の研究結果の意義について次のように述べている。「今回の研究では、うつ病の遺伝子構造について、これまで知られていなかった部分が明らかになった。「今回の研究により、うつ病の遺伝子構造がこれまで知られていなかったことが明らかになった。これにより、ゲノムの新たな領域を対象とした研究が可能になり、この情報をもとに、現在他の適応症で承認されている薬剤をうつ病の治療に再利用することができる」と述べている。

2021年10月18日に発表された新しい研究結果によると、貧困状態は、遺伝子発現の変化を通じてヒトの心血管や免疫系の健康に影響を与える可能性があり、その影響は女性と男性で異なることが示唆された。この研究結果を米国人類遺伝学会2021年仮想年次総会(10月18日~22日)で発表したウェイン州立大学(ミシガン州)の遺伝学者であるNicole Arnold博士によると、貧困のような社会経済的な代表的な要因が、遺伝子の活動や健康に影響を与える可能性が浮き彫りになった。このArnold博士らのASHGアブストラクトは「健康維持のためのコスト:遺伝子発現の違いによる貧困の関連性(The Cost of Good Health: Poverty Association with Differential Gene Expression)」と題されている。多くの生物医学的および社会科学的研究が、疾病リスクや回復力に対する社会的要因や遺伝的要因の役割を決定することの複雑さを記録している。最近の研究では、これらの要因がエピジェネティクスと呼ばれる生物学的メカニズムによって相互に関連する可能性があることも明らかになっている。このような遺伝子発現の変化は、社会経済的な要因と相関している可能性がある。

2021年10月18日に開催された米国人類遺伝学会(ASHG)2021年バーチャル年次総会で、ミシガン大学の研究員であるWei Zhao博士が発表した新しい研究によると、アルコールとタバコの使用は、成人の「エピジェネティック年齢」の上昇と関連し、男性の大量のアルコール使用は、子孫のエピジェネティック年齢の加速の上昇と関連していた。アルコールやタバコの使用が、エピジェネティックな変化を通じて、個人の健康だけでなく、子孫の生物学的健康にも影響を与えることはよく知られている。エピジェネティックな変化とは、遺伝子の発現に影響を与えるが、DNAの塩基配列は変化しない変化のことで、「エピジェネティック年齢」とは、ゲノムに沿ったエピジェネティックなパターンに基づいて生物学的年齢を推定することだ。今回の研究では、物質乱用の発症に関する世界で最も長期にわたる研究であるミシガン縦断研究のデータを用いて、アルコールとタバコの使用がエピジェネティック年齢にどのような影響を与えるかを調べた。このZhao博士らのアブストラクトは、「ミシガン縦断研究におけるアルコール使用とタバコ喫煙のエピジェネティックな加齢加速に対する性差および世代差の影響(Sex-Specific and Generational Effects of Alcohol Use and Tobacco Smoking on Epigenetic Age Acceleration in the Michigan Longitudinal Study)」と題されている。

米国人類遺伝学会(American Society of Human Genetics)の第20回年次総会(10月18日~22日)で発表された新しい研究結果によると、DNAの発現制御機構のわずかな変化が、年代、性別、寿命と相関していることが明らかになった。これらの知見は、長寿の研究に新たな道を開くとともに、哺乳類の進化におけるエピジェネティクスの役割や、加齢や寿命に関わる生物学的プロセスについての理解を深めるものだ。エピジェネティックな変化は、遺伝子の変化とは異なり、DNAの塩基配列を変えずに遺伝子の働きに影響を与える。細胞が遺伝子の働きを制御するために用いる一般的なエピジェネティックなメカニズムの1つに、特定のDNA文字(塩基)のメチル化がある。DNAのメチル化レベルは年齢とともに変化し、多くの動物モデルで長寿との関連が指摘されている。このたび、2021年10月18日、カリフォルニア大学ロサンゼルス校(UCLA)の遺伝学者Amin Haghani博士率いるチームは、小型で短命なものから巨大で長寿なものまで、200種以上の哺乳類のDNAメチル化について調査した結果を報告した。このデータセットを解析することで、哺乳類の種の中で、あるいは種を超えて、DNAメチル化と、年代、性別、最大寿命などのさまざまな形質との間に相関関係を確認することができた。Haghan博士らのアブストラクトのタイトルは、「哺乳類の寿命の違いを支えるDNAメチル化パターン(DNA Methylation Patterns Underlying Lifespan Differences in Mammals)」と題されている。Haghani博士は、同僚のSteve Horvath博士とともに、200種の哺乳類から採取したさまざまな年齢層の14,000以上の組織サンプルのDNAメチル化パターンをプロファイリングした。この種には、寿命の短い動物(マウスやラット)や寿命の長い動物(コウモリやクジラ)が含まれていた。このデータを機械学習で解析した結果、年齢、性別、最大寿命、成体の体重など、種の内外でさまざまな形質と相関するメチル化パターンを特定することができた。

世界各地でミツバチが大量に死滅している。この死滅は、ミツバチを殺したり、採餌後に巣に戻ってくる能力を損なったりする致命的なウイルスが原因のひとつである。しかし、2021年9月28日にiScienceのオンライン版に掲載された研究によると、安価で自然に存在するある化学物質が、ミツバチへのウイルスの影響を防いだり逆転させたりする可能性があることを示している。感染前にこの化合物を与えられたハチは、5日後にウイルスに感染せずに済む可能性が9倍高かった。また、ハチの巣をリアルタイムで監視することで、この化合物を与えられたハチは、1日の採餌の終わりに巣に戻る可能性が高いことも示された。このiScience誌に掲載されたオープンアクセス論文は、「ヒストン・デアセチラーゼ・インヒビター処理後の変形翅ウイルス感染ハチの採餌行動のリアルタイム・モニタリング(Real-Time Monitoring of Deformed Wing Virus-Infected Bee Foraging Behavior Following Histone Deacetylase Inhibitor Treatment)」と題されている。変形翅ウイルスは、バローアダニという寄生虫によって媒介され、ミツバチのライフサイクルを通じて感染する。重度に感染したハチは、数日以内に死亡するか、翼の発達が悪くなって飛行や採餌の能力が損なわれる。また、これまでの研究では、このウイルスがミツバチの学習能力や記憶力を低下させ、餌を探した後に家を見つける能力に影響を与える可能性があることがわかっている。迷子になったハチは死ぬ可能性が高く、餌が不足してコロニーが最終的に崩壊する可能性もある。

テキサス大学MDアンダーソン癌センターの研究者らによる新たな発見により、炎症と膵臓癌発症との間の長年にわたる関係が明らかになった。2021年9月17日にScience誌のオンライン版に掲載された研究結果によると、膵臓細胞は、繰り返される炎症エピソードに対する適応反応を示し、最初は組織の損傷を防いでいるが、変異型KRASが存在すると腫瘍の形成を促進することがわかったという。著者らは、膵臓癌の約95%に見られる変異型KRASが、この適応反応をサポートすることで、癌の原因となる変異を維持しようとする選択圧が働くことを明らかにした。Science誌に掲載された論文は「炎症の上皮的記憶は組織の損傷を抑制する一方で膵臓の腫瘍化を促進する(Epithelial Memory of Inflammation Limits Tissue Damage While Promoting Pancreatic Tumorigenesis)」と題されている。「我々は、一過性の炎症事象が上皮細胞の長期的なトランスクリプトームおよびエピジェネティック・リプログラミングを誘発し、炎症が治まった後も発癌性KRASと協力して膵臓腫瘍を促進することを発見した」「繰り返し起こる膵炎では、組織の損傷を抑えるためにKRASの変異を早期に獲得することができる。このことは、変異した細胞を選択するための強い進化圧力の存在を示唆しており、膵臓癌に変異したKRASがほぼ共通して存在することを説明できる可能性がある。」と、責任著者であるゲノム医学助教のAndrea Viale医学博士は述べている。

ジョンズ・ホプキンス・キンメル癌センターの研究者が率いる大規模な国際共同研究により、膵臓癌の遺伝子やタンパク質の様々な側面を調べた結果、膵臓癌の治療や早期診断のための有望な新しいターゲットが特定された。この研究成果は、2021年9月16日にCell誌のオンライン版に掲載された。このオープンアクセスの論文は、「膵臓腺癌のプロテオゲノミック・キャラクタリゼーション(Proteogenomic Characterization of Pancreatic Ductal Adenocarcinoma)」と題されている。本研究の責任者である Hui Zhang 博士 (ジョンズ・ホプキンス大学医学部病理学教授、質量分析コア ファシリティ ディレクター) は、「現在、膵臓癌の患者にはほとんど選択肢がないが、本研究で得られた豊富なデータは、膵臓癌と闘う新たな方法につながる可能性がある」と述べている。

NIHの支援を受けて行われた新しい研究では、細胞から放出され、他の細胞に取り込まれる可能性のある微小なナノ粒子であるエクソソーム(画像)を用いて、HIVに感染したマウスの細胞内に新しいタンパク質を送り込んだ。このタンパク質は、HIVの遺伝物質に付着してHIVの複製を阻止し、その結果、骨髄、脾臓、脳内のHIVの量が減少した。この研究は、NIHの国立精神衛生研究所(NIMH)からの資金提供を受け、2021年9月20日にNature Communications誌のオンライン版に掲載されたもので、HIVを抑制するための新しいデリバリーシステムの開発に道を開くものだ。このオープンアクセス論文は、「エクソソームを介したHIV-1の安定したエピジェネティック抑制(Exosome-Mediated Stable Epigenetic Repression of HIV-1)」と題されている。「今回の結果は、HIVの遺伝子発現を抑制するエピジェネティクスベースの治療薬を脳組織に投与するためのエクソソーム工学の可能性を示している。これは、従来、HIVがHIV治療から隠れることができた領域だ。」とNIMHのエイズ研究部門のHIV神経病態・遺伝・治療部門のチーフであるJeymohan Joseph博士(本研究には関与していない)は述べた。

癌の特徴の一つは、ゲノムの不安定性、つまり細胞分裂の際に突然変異やDNAの損傷が蓄積してゲノムが変化してしまう傾向にあることだ。DNAの突然変異は、紫外線やX線の照射、発癌物質として知られる特定の化学物質などによって生じるが、我々の細胞は、損傷したDNAを監視し修復するメカニズムを発達させている。ゲノムの安定性は、ある種のメッセンジャーRNA(mRNA)の翻訳によっても脅かされることがある。DNAからコピーされたmRNAは、タンパク質を作るための遺伝暗号として機能する。特定のmRNAは、癌の転移に関連していることが知られている。この脅威に対抗するために、腫瘍抑制タンパク質であるヘテロジニアス核リボヌクレオプロテインE1(hnRNP E1)という特定のタンパク質が、これらのmRNAと結合して、タンパク質を作るのを阻止する。サウスカロライナ医科大学(MUSC)の研究者らはこれまでに、hnRNP E1が転移関連RNAに結合してその翻訳を阻害する仕組みを明らかにしている。hnRNP E1は、細胞の細胞質でRNAと結合するが、このタンパク質は細胞の核にも存在しているという。このことから、hnRNP E1は、DNAとも相互作用するのではないかと考えられた。その結果、hnRNP E1が核内でDNAと結合するという新たな役割を果たしていることが、2021年7月16日付でLife Science Allianceのオンライン版に掲載された。このオープンアクセス論文は、「異種核リボヌクレオタンパク質E1がポリシトシンDNAを結合し、ゲノムの完全性を監視する(Heterogeneous Nuclear Ribonucleoprotein E1 Binds Polycytosine DNA and Monitors Genome Integrity)」と題されている。「このRNA結合タンパク質は、幅広いRNA結合機能を持つだけでなく、DNA上の類似した配列にも結合することがわかった」「このタンパク質は、配列や構造に応じた方法でDNAと結合し、ゲノムの完全性を維持し、DNAの損傷を感知したり防いだりする」と、筆頭著者でMUSC助教授のBidyut K. Mohanty博士は述べている。

2021年9月16日、STEM CELLS Translational Medicine(SCTM)誌のオンライン版に掲載された、コーネル大学獣医学部の一部であるベイカー・インスティテュート・フォー・アニマル・ヘルス(ニューヨーク州)の研究者らによるex vivoモデルでの研究において、幹細胞の一種である間葉系間質細胞(MSC)の分泌物で傷を治療することで、メチシリン耐性黄色ブドウ球菌(MSRA)の生存率を効果的に低下させ、周囲の皮膚細胞を刺激して細菌に対する防御力を高めることができることが報告された。このオープンアクセス論文は、「間葉系ストローマ細胞が分泌するCCL2は、角化細胞における抗菌ペプチドの発現増加を介して抗菌防御機構を促進する(Mesenchymal Stromal Cell Secreted CCL2 Promotes Antibacterial Defense Mechanisms Through Increased Antimicrobial Peptide Expression in Keratinocytes)」と題されている。米国疾病対策予防センター(CDC)の最新の統計によると、2017年、米国では11万9,000人以上の人が黄色ブドウ球菌(S. aureus)と呼ばれる細菌による血流感染症にかかり、2万人近くが死亡した。黄色ブドウ球菌は、免疫力の低下した患者や傷口が感染した環境など、特定の状況下で脅威となる可能性があり、また、現在、細菌感染症の治療に使用できる唯一の薬である多くの抗生物質に対して耐性を持っていることから、大きな医療問題となっている。しかし、今回の研究では、最も危険な菌の1つであるMRSAを治療するための新たな方法が示されたことで、この状況を変えることができるかもしれない。

動物を見ているだけで、多くのことを知ることができる。しかし、中には暗闇の中で・・・つまり紫外線のついた懐中電灯を使わなければわからない秘密もある。それは、砂地の地下に住む小さなげっ歯類、ホリネズミだ。ジョージア大学(UGA)の研究者らが発表した新しい論文によると、気が強く、孤独で、丸い頬を持つこの動物は、紫外線の下でのみ明らかになる特別な能力を持っているという。ホリネズミは、紫外線を照射すると、色のついた光を放つ生物蛍光体である。画像は、紫外線を照射したホリネズミだ(出典:UGA)。2021年7月19日にThe American Midland Naturalistのオンライン版に掲載されたもので、ホリネズミの生体蛍光が記録されたのは初めてのことだ。UGA Warnell School of Forestry and Natural Resourcesの博士課程を卒業したてで、この研究の筆頭著者であるJ.T. Pynne博士は、数年前にムササビやオポッサムでこの現象を記録した同様の研究を読んで、この可能性に光を当ててみようと思ったという。この新しい論文は「ホリネズミの紫外線生物蛍光(Ultraviolet Biofluorescence in Pocket Gophers)」と題されている。現在、ジョージア州野生生物連合の私有地野生生物学者であるPynne博士は、「私も含めて多くの人が他の動物に興味を持っていた」と語る。そこで、彼は UGA Warnell の動物標本のコレクションに目を向けた。

何百もの癌関連遺伝子が、病気を引き起こす上で、科学者たちの予想とは異なる役割を果たしていることがわかった。腫瘍抑制遺伝子と呼ばれるものは、長い間、細胞の成長を妨げ、癌細胞が広がるのを防ぐことが知られていた。これらの遺伝子に変異があると、腫瘍が野放しになってしまうと科学者らは考えていた。今回、ハワード・ヒューズ・メディカル研究所(HHMI)の研究者であり、ハーバード大学医学部のグレゴール・メンデル遺伝学・医学教授であるStephen Elledge博士(写真)らの研究チームは、これらの欠陥遺伝子の多くが驚くべき新しい作用を持つことを明らかにした。ブリガム・アンド・ウィメンズ病院の遺伝学者でもあるElledge博士らは、100以上の変異した腫瘍抑制遺伝子が、マウスの悪性細胞を免疫系が発見して破壊するのを防ぐことができるとし、その結果を2021年9月17日付でScience誌のオンライン版に報告した。「衝撃だったのは、これらの遺伝子は、単に『成長しろ、成長しろ、成長しろ!』と言っているのとは違い、免疫系を回避するためのものだった」とElledge博士は語った。Science誌に掲載されたこの論文は、「適応型免疫系は腫瘍抑制遺伝子の不活性化の主要な要因である(The Adaptive Immune System Is a Major Driver of Selection for Tumor Suppressor Gene Inactivation)」と題されている。これまでの常識では、腫瘍抑制遺伝子の大部分は、突然変異によって細胞が暴走し、無秩序に成長したり分裂したりすると考えられていた。しかし、この説明にはいくつかのギャップがあった。例えば、これらの遺伝子の多くが変異しても、シャーレの中の細胞に入れても実際には暴走しない。また、異常な細胞を攻撃する能力に長けた免疫系が、なぜ新たな腫瘍の芽を摘み取ることができないのかについても説明がつかなかった。

MITのエンジニアは、Cancer Research UKマンチェスター研究所の科学者と共同で、健康な膵臓細胞または癌細胞を用いて、膵臓の小さなレプリカを成長させる新しい方法を開発した。この新しいモデルは、現在最も治療が困難な癌の一つである膵臓癌の治療薬の開発や試験に役立つと期待されている。研究チームは、膵臓を取り巻く細胞外環境を模倣した特殊なゲルを用いて膵臓の「オルガノイド」を培養し、膵臓腫瘍とその環境との重要な相互作用を研究することができた。現在、組織を培養するために使用されているいくつかのゲルとは異なり、MITの新しいゲルは完全に合成されており、組み立てが容易で、常に一定の組成で製造することができる。「再現性の問題は大きな課題だ」「研究者らは、この種のオルガノイドの培養をより計画的に行い、特に微小環境を制御する方法を模索している」と、MIT School of EngineeringのTeaching Innovation教授であり、生物工学と機械工学の教授でもあるLinda Griffith博士は述べた。

マックスプランク医学研究所(ドイツ・ハイデルベルグ)とDWIライプニッツ相互作用材料研究所(ドイツ・アーヘン)の研究者らは、創傷閉鎖時の細胞シグナルを制御する合成エクソソームを開発した。この合成構造は、体内のさまざまなプロセスで細胞間のコミュニケーションに基本的な役割を果たしている、天然の細胞外小胞[編集部注:エクソソームは細胞外小胞のサブセット]に似せて作られている。この研究者は、創傷治癒や新しい血管の形成を制御・支援する重要なメカニズムを明らかにした。細胞から天然の細胞外小胞を分離するのではなく、プログラム可能な完全合成細胞外小胞をゼロから設計・構築した。その結果、天然のブループリントの機能にヒントを得て、治療機能を持つ完全合成エクソソームを構築することに初めて成功した。本研究成果は、2021年9月3日付けでScience Advances誌のオンライン版に掲載された。このオープンアクセス論文は、「バイオメディカル関連の完全合成細胞外ベシクルのボトムアップ・アセンブリ(Bottom-Up Assembly of Biomedical Relevant Fully Synthetic Extracellular Vesicles )」と題されている。我々のような多細胞生物にとって、細胞間のコミュニケーションがうまく機能することは基本的なことだ。我々の体のほとんどすべてのプロセスは、細胞が組織や器官を形成したり、例えば免疫反応の際に協力し合ったりする際に、細胞間や細胞間の調整された相互作用を必要とする。

SARS-CoV-2のワクチンが開発されているにもかかわらず、世界的な免疫が達成されるまで、効果的な治療薬が必要とされている。英国マンチェスター大学のAdam Pickard博士とKarl Kadler博士らが、2021年9月9日にPLOS Pathogensのオンライン版で発表した研究によると、FDAで承認されているいくつかの薬剤をCOVID-19感染症の治療に安全に再利用できる可能性が示唆された。このオープンアクセス論文は、「ヒト細胞におけるSARS-CoV-2の複製を遅らせる再利用可能な薬剤の発見(Discovery of Re-Purposed Drugs That Slow SARS-CoV-2 Replication In Human Cells)」と題されている。世界の人口の大部分は未だにワクチンを接種していないが、安全性が証明され、容易に配布でき、SARS-CoV-2の感染拡大を抑えることができる薬剤はほとんどない。この研究者らは、SARS-CoV-2感染症を効果的に治療できる薬剤を特定するために、SARS-CoV-2ウイルスに発光酵素のタグを付けてウイルス量を定量化し、FDA(米国食品医薬品局)が承認している1,971種類の治療薬をスクリーニングした。次に、さまざまな種類のヒト感染細胞を用いて、各薬剤の効果を分析し、各薬剤を投与した後の感染細胞でのウイルスの複製状況を観察した。

コンゴ民主共和国のコンゾ(konzo, 痙性不全対麻痺)多発地域の腸内細菌叢と遺伝子の違いが、加工の不十分なキャッサバを食べた後のシアン化物の放出に影響する可能性があることが、180人の子供を対象とした最近の研究で明らかになった。キャッサバは、開発途上国の5億人以上の人々の食料安全保障に関わる作物だ。リスクの高いコンゾ地域に住む子供らは、腸内のグルコシダーゼ(リナマラーゼ)微生物が多く、ロダナーゼ微生物が少ないことから、この病気に対する感受性が高く、防御力が低い可能性があると、国立小児病院(ワシントンDC)の研究者が中心となって、2021年9月10日にNature Communications誌のオンライン版で研究結果を発表した。このオープンアクセスの論文は、「コンゾの腸内細菌叢について(The Gut Microbiome in Konzo)」と題されている。コンゾは、麻痺を伴う重篤で不可逆的な神経疾患だ。コンゾは、コンゴ民主共和国をはじめとする低所得国の必須作物であるキャッサバ(マニオックの根)の加工が不十分なものを食べた後に発症する。キャッサバには、シアノゲン化合物であるリナマリンが含まれている。グルコシダーゼ活性を持つ酵素は、デンプンを単糖に変換する一方で、リナマリンを分解し、体内にシアン化合物を放出する。

近年の犬の品種改良により、キャバリア・キング・チャールズ・スパニエルに病気を引き起こす変異が含まれており、その中には一般的な心臓疾患である粘液腫性僧帽弁膜症(MMVD)に関連する変異も含まれていた。ウプサラ大学のErik Axelsson博士らは、この新しい知見を2021年9月2日にPLOS Genetics誌のオンライン版で発表した。このオープンアクセス論文は、「犬種形成の遺伝的帰結-キャバリア・キング・チャールズ・スパニエルの粘液性僧帽弁疾患に関連する不自然な遺伝的変異の蓄積と突然変異の固定化(The Genetic Consequences of Dog Breed Formation-Accumulation of Deleterious Genetic Variation and Fixation of Mutations Associated with Myxomatous Mitral Valve Disease in Cavalier King Charles Spaniels)」と題されている。過去300年にわたる犬の繁殖により、様々なサイズ、形状、能力を持つ驚くべき多様性を持った犬種が誕生した。しかし残念なことに、この過程で多くの犬種が近親交配し、遺伝性疾患を受け継ぐ可能性が高くなっている。今回の研究では、最近の繁殖方法によって、犬の病気を引き起こす変異体の数が増えているかどうかを知りたいと考えた。研究チームは、ビーグル、ジャーマンシェパード、ゴールデンレトリバーなど、一般的な8つの犬種のうち、20匹の犬の全ゲノム配列を決定した。その結果、最も強い交配が行われたキャバリア・キング・チャールズ・スパニエルは、他の犬種よりも有害な遺伝子変異が多いことがわかった。

片頭痛に悩まされている人は2型糖尿病になりにくく、また、糖尿病になった人の中には片頭痛になりにくい人もいる。今日、これらの疾患の関連性を研究している科学者らが、片頭痛の痛みを引き起こすペプチドが、マウスのインスリン分泌に影響を与えることを報告した。おそらく、分泌されるインスリンの量を調節したり、インスリンを産生する膵臓細胞の数を増やしたりすることで、インスリンの分泌に影響を与えるのだろう。この発見は、糖尿病の予防や治療法の改善につながる可能性がある。アメリカ化学会秋季大会(ACS Fall 2021)でその研究成果が発表された。ACS Fall 2021は、8月22日~26日にバーチャルと対面で開催されたハイブリッドミーティングで、オンデマンドコンテンツは8月30日~9月30日に配信される。この会議では、幅広い科学のトピックに関する7,000件以上の発表が行われた。「片頭痛は脳で起こり、糖尿病は膵臓に関連しており、これらの臓器は互いに離れている」と、本プロジェクトの研究責任者であるテネシー大学のThanh Do博士は述べた。Do博士は、「糖尿病と脳の間には逆の関係があるという論文が数多く発表されたことから、このテーマに関心を持つようになった」と語る。

家庭菜園や農家にとって、草食昆虫は彼らの努力や作物の収穫を妨げる大きな脅威となっている。これらの昆虫を捕食する捕食昆虫は、害虫が感知できる匂いを発し、害虫は食べられないように行動を変え、さらには生理的にも変化する。従来の農薬に対する昆虫の耐性が高まる中、このたびペンシルバニア州立大学の研究者らは、捕食者が発する「恐怖の匂い」をボトルに詰めて、刺激の強い物質を使わずに自然に破壊的な昆虫を撃退・撹乱する方法を開発したと報告した。 2021年8月25日、アメリカ化学会の秋季大会(ACS Fall 2021)でその研究成果が発表された。ACS Fall 2021は、2021年8月22日~26日にバーチャルと対面(アトランタ)で開催されたハイブリッド会議で、オンデマンドコンテンツは2021年8月30日~9月30日の間、視聴できる。この会議では、幅広い科学トピックに関する7,000件以上のプレゼンテーションが行われた。危険な状況を回避するために、感覚を働かせることは珍しいことではない。人間は火事を視覚や嗅覚を使い脅威を察知することができる。獲物となる生物が捕食の脅威を検知できることを示唆する、リスクに対するこのような行動反応の証拠が、分類群を超えて存在しているが、特に昆虫の場合、検知のメカニズムはあまりよくわかっていなかった。

エクソソームとは、細胞がデリケートな分子を保護し、全身に届けるために作るナノサイズの生体カプセルである(他にも機能がある)。エクソソームは、酵素による分解や、腸や血流中の酸性度や温度の変化にも耐えられる丈夫なカプセルであり、ドラッグデリバリーの候補として期待されている。しかし、臨床レベルの純度を達成するためにエクソソームを採取するのは、複雑なプロセスを要する。バージニア工科大学(VTC)のFralin Biomedical Research Instituteの教授であり、Center for Vascular and Heart ResearchのディレクターであるRob Gourdie博士は、「エクソソームは牛乳に豊富に含まれているが、他の乳タンパク質や脂質から分離するのは困難だった」と述べている。Gourdie博士の研究室では、殺菌していない牛乳からエクソソームを採取するスケーラブルな方法を開発した。Nanotheranostics誌に掲載されたこの精製方法を用いることで、研究チームは1ガロンの未殺菌牛乳に対して約1カップの精製されたエクソソームを抽出することがでたという。このオープンアクセス論文は、「牛乳から高品質な精製低分子細胞外小胞をスケーラブルに製造するための新規プロトコル(Novel Protocols for Scalable Production of High Quality Purified Small Extracellular Vesicles from Bovine Milk)」と題されている。Gourdie博士は、Commonwealth Research Commercialization Fund Eminent Scholar in Heart Reparative Medicine Researchや、Virginia Tech College of EngineeringのBiomedical Engineering and Mechanicsの教授も務めている。

現在のCOVID-19を引き起こすウイルスは、はるか昔の2019年12月に最初に人々を病気にしたウイルスと同じではない。現在流行している亜種の多くは、元のウイルスに基づいて開発された抗体ベースの治療薬の一部に部分的に耐性を持っている。パンデミックが続くと、必然的にさらに多くの亜種が発生し、耐性の問題は大きくなる一方だ。ワシントン大学医学部(セントルイス)の研究者らは、広範囲のウイルス亜種に対して低用量で高い保護効果を示す抗体を発見した。さらに、この抗体は、ウイルスの亜種間でほとんど違いのない部分に結合するため、この部分で耐性が生じる可能性は低いと考えられるという。本研究成果は、2021年8月18日にImmunity誌のオンライン版に掲載され、ウイルスが変異しても効力が失われにくい、新しい抗体ベースの治療法の開発に向けた一歩となる可能性がある。この論文は、「SARS-CoV-2を強力に中和する抗体が、高度に保存されたエピトープのユニークな結合残基を利用して、懸念されるバリアントを抑制する(A Potently Neutralizing SARS-CoV-2 Antibody Inhibits Variants of Concern By Utilizing Unique Binding Residues in a Highly Conserved Epitope)」と題されている。ワシントン大学医学部(セントルイス)のMichael S. Diamond博士(MD, PhD)は、「現在の抗体は、すべての亜種ではなく、一部の亜種に有効である可能性がある」と述べている。「このウイルスは、時間と空間を超えて進化し続けるだろう。広範囲に中和する効果的な抗体を持つことで、個別に作用するだけでなく、組み合わせて新しい組み合わせを作ることができ、耐性を防ぐことができるだろう」と述べている。

マサチューセッツ工科大学(MIT)の研究者らは、フジツボが岩にしがみつくために使う粘着性物質にヒントを得て、傷ついた組織を密封し、出血を止めることができる、強力で生体適合性のある接着剤を設計した。この新しい接着剤は、表面が血液で覆われていても接着することができ、塗布後約15秒でしっかりと密閉することができるという。このような接着剤を使えば、外傷の治療や手術中の出血を抑えるのに、より効果的な方法を提供できる可能性があるとこの研究者らは述べている。「我々は、人間の組織のように湿っていて動的な環境という、困難な環境における接着の問題を解決している。同時に、この基本的な知識を、命を救うことができる実際の製品に結びつけようとしているのだ」と、本研究の上級著者の一人であるMITの機械工学および土木環境工学の教授、Xuanhe Zhao博士は述べている。ミネソタ州ロチェスターにあるメイヨー・クリニックの心臓麻酔科医および重症患者治療医であるChristoph Nabzdyk医学博士も、2021年8月9日にNature Biomedical Engineering誌のオンライン版に掲載された論文の上席著者だ。MITリサーチサイエンティストのHyunwoo Yuk博士とポスドクのJingjing Wu博士は、この研究の主著者だ。この論文は、「フジツボ粘着剤から着想を得たペーストによる迅速かつ凝固に依存しない止血効果(Rapid and Coagulation-Independent Haemostatic Sealing By a Paste Inspired by Barnacle Glue)」と題されている。自然からのインスピレーション

あらゆる感覚は世界の豊かさに対応しなければならないが、嗅覚を司る嗅覚系の挑戦はその比ではない。虹のすべての色を感じるためには、目の中に3つの受容体があれば十分だ。しかし、色鮮やかな世界は、何百もの分子で構成され、形や大きさ、性質が大きく異なる何百万もの匂いを持つ化学の世界の複雑さに比べると見劣りする。例えば、コーヒーの香りは、200種類以上の化学物質の組み合わせから生まれる。それぞれの化学物質は、構造的に多様であり、どれかだけではコーヒーの香りはしない。ロックフェラー大学の神経科学者Vanessa Ruta博士(写真)は、「嗅覚系は、わずか数百個あるいはそれよりも少ない嗅覚受容体によって、膨大な数の分子を認識しなければならない。他の感覚器官とは異なるタイプの論理を進化させなければならなかったことは明らかだ」と述べた。Ruta博士らは、嗅覚受容体が働いている様子を世界で初めて分子レベルで捉え、匂いの認識に関する数十年来の疑問に答えを提示した。2021年8月4日にNature誌のオンライン版に掲載されたこの研究成果は、嗅覚受容体が、神経系の他の受容体ではほとんど見られない論理に従っていることを明らかにしている。ほとんどの受容体は、少数の選択された分子とロックアンドキー方式で結合するように精密に形成されているが、嗅覚受容体の多くは、それぞれが多数の異なる分子と結合する。様々な匂いに対応することで、各受容体は多くの化学成分に反応することができる。その結果、脳は受容体の組み合わせによる活性化パターンを考慮して匂いを把握することができる。Nature誌に掲載されたこのオープンアクセスの論文のタイトルは、「昆虫の嗅覚受容体における匂いの認識の構造的基盤(The Structural Basis of Odorant Recognition in Insect Olfactory Receptors)」と題されている。

女性が閉経を迎える年齢は、生殖能力にとって非常に重要であり、女性の健康的な加齢にも影響を与える。しかし、生殖年齢の研究は科学者にとって困難であり、その基礎となる生物学についての洞察は限られていた。今回、女性の生殖寿命に影響を及ぼす約300の遺伝子変異が特定された。さらに、マウスを用いて、これらの遺伝子変異に関連するいくつかの重要な遺伝子を操作し、生殖寿命を延ばすことにも成功した。この研究成果は、2021年8月4日にNature誌のオンライン版に掲載され、生殖加齢プロセスに関する知識を大幅に増やすとともに、どのような女性が他の女性よりも早く閉経を迎えるかという予測を改善する方法を提供している。この論文は、「ヒト卵巣の老化を制御する生物学的メカニズムの遺伝的洞察(Genetic Insights into Biological Mechanisms Governing Human Ovarian Ageing)」と題されている。この150年の間に平均寿命は飛躍的に伸びたが、多くの女性が自然に閉経する年齢は約50歳と比較的一定だ。女性は生まれながらにしてすべての卵子を持っているが、年齢とともに徐々に失われていく。卵子のほとんどがなくなると閉経するが、自然な生殖能力の低下はそれよりもかなり早い段階で起こる。

アリストテレスの時代から、ヒトの肝臓は体内の臓器の中で最も再生能力が高いことが知られており、70%切断しても再生することができるため、生体肝移植が可能になった。肝臓は損傷を受けても完全に再生するが、その再生プロセスの活性化や停止、再生が終了するタイミングを制御するメカニズムは、まだ解明されていなかった。  このたび、ドレスデン(ドイツ)のマックスプランク分子細胞生物学・遺伝学研究所(MPI-CBG)、ガードン研究所(英国・ケンブリッジ)およびケンブリッジ大学(生化学部)の研究者らは、間葉系細胞という種類の制御細胞が、肝臓の再生を活性化したり停止したりすることを発見した。間葉系細胞は、再生する細胞(上皮細胞)との接触回数を増やすことで、肝臓の再生を促進したり停止したりする。今回の研究では、癌や慢性肝疾患を引き起こす可能性のある再生プロセスのエラーは、両集団間の接触の数が間違っていることが原因であることが示唆された。 本研究は、2021年8月2日にCell Stem Cell誌のオンライン版に掲載された。このオープンアクセス論文は、「大動脈周囲の間充織と管状上皮の動的な細胞接触が肝細胞増殖の可変抵抗器として働く(Dynamic Cell Contacts Between Periportal Mesenchyme and Ductal Epithelium Act As a Rheostat for Liver Cell Proliferation)」と題されている。成熟した肝細胞が再生反応を引き起こす分子メカニズムは、まだほとんど解明されていない。欧州では、約2,900万人が肝硬変や肝癌などの慢性肝疾患に苦しんでいる。これらの疾患は、罹患率および死亡率の主要な原因となっており、肝疾患は世界で年間約200万人の死亡原因となっている。現在のところ、治療法はなく、肝不全に対する唯一の治療法は肝臓移植だ。そのため、科学者らは、機能を回復させるための代替手段として、肝臓の再生能力を誘発する方法を模索している。 

メラノーマの原因となる突然変異は、従来考えられていたDNAのコピーエラーではなく、主に太陽光によるDNAの化学変換に起因することが、ヴァンアンデル研究所(VAI)の研究者らによる研究で明らかになり、Science Advances誌2021年7月30日号に掲載された。このオープンアクセス論文は、「メラノーマの突然変異の主要なメカニズムは、ピリミジン二量体中のシトシンの脱アミノ化にあることがCircle Damage Sequencingで明らかになった(The Major Mechanism of Melanoma Mutations Is Based on Deamination of Cytosine in Pyrimidine Dimers As Determined by Circle Damage Sequencing)」と題されている。この研究成果は、メラノーマのメカニズムに関する長年の信念を覆すものであり、予防の重要性を強調するとともに、他の種類の癌の起源を調査するための道筋を示している。 「癌は、欠陥のある細胞が生存し、他の組織に侵入するためのDNA変異によって生じる。しかし、ほとんどの場合、これらの変異の原因は明らかになっておらず、治療法や予防法の開発を難しくしている。今回、メラノーマでは、太陽光によるダメージが、DNA複製時に完全な変異をもたらす "前変異 "を生じさせることで、DNAを準備することが明らかになった」と、VAIの教授で本研究の責任著者であるGerd Pfeifer博士は述べている。メラノーマは、色素を作り出す皮膚細胞から発生する深刻なタイプの皮膚癌だ。他の皮膚癌に比べて発生頻度は低いものの、メラノーマは転移して他の組織に浸潤する可能性が高く、患者の生存率を著しく低下さる。これまでの大規模なシーケンス研究では、メラノーマはあらゆる癌の中で最も多くのDNA変異を有することが明らかになっている。他の皮膚癌と同様に、メラノーマも日焼け、特にUVBと呼ばれる放射線に関連している。UVBは皮膚細胞や細胞内のDNAにダメージを与える。

UCLA Jonsson Comprehensive Cancer Centerの科学者が主導したマウスを用いた研究によると、まれで攻撃的なサブタイプの白血病でしばしば過剰に発現するタンパク質を除去することで、癌の進行を遅らせ、生存の可能性を大幅に高めることができるという。この研究成果は、RNA結合タンパク質であるIGF2BP3(insulin-like growth factor 2 mRNA-binding protein 3)を多く含む癌、特に混成系統白血病(MLL)遺伝子の染色体再配列を特徴とする急性リンパ性白血病および骨髄性白血病に対する標的治療法の開発に役立つ可能性がある。この研究成果は、2021年6月29日にLeukemia誌のオンライン版に掲載され、がんの標的治療法の開発に役立つ可能性がある。このオープンアクセス論文は、「RNA結合タンパク質IGF2BP3はMLL-AF4-Mediated Leukemogenesisに重要である(The RNA-Binding Protein IGF2BP3 Is Critical for MLL-AF4-Mediated Leukemogenesis)」と題されている。これらのMLL再配列白血病では、IGF2BP3が、癌関連タンパク質の遺伝的指示を担う特定のRNA分子に付着し、癌の発生を著しく増幅させる。このタイプの白血病と診断された小児および成人は、予後が悪く、治療後の再発のリスクが高いとされている。

2021年7月27日、ライス大学(テキサス州ヒューストン)の生物工学者が3Dプリントとスマートバイオマテリアルを用いて、1型糖尿病患者のためのインスリン産生インプラントを製作していることが発表された。この3年間のプロジェクトは、Omid Veiseh博士とJordan Miller博士の研究室が共同で行っており、糖尿病研究の世界的な主要基金である若年性糖尿病研究財団(JDRF)の助成金を受けている。Veiseh博士とMiller博士は、ヒトの幹細胞から作られたインスリンを産生するβ細胞を用いて、血糖値を感知し、適切な量のインスリンを投与することで血糖値を調整するインプラントを開発しようとしている。バイオエンジニアリング学科の助教授であるVeiseh博士は、移植された細胞治療を免疫系から保護する生体材料の開発に10年以上を費やしてきた。また、バイオエンジニアリング学科のMiller准教授は、15年以上にわたり、血管系(血管のネットワーク)を持つ組織を3Dプリントする技術を研究してきた。

フランスの生物文化人類学研究ユニット(CNRS / エクス・マルセイユ大学 / EFS)の研究チームは、3体のネアンデルタール人と1体のデニソワ人の血液型を分析し、アフリカ起源、ユーラシア大陸への拡散、初期のホモ・サピエンスとの交配に関する仮説を確認した。また、遺伝的多様性が低く、人口統計学的に脆弱である可能性を示す証拠も発見された。この研究成果は、2021年7月28日にPLOS ONEのオンライン版に掲載された。このオープンアクセス論文は、「ネアンデルタール人とデニソワ人の血液型を解読(Blood Groups of Neandertals and Denisova Decrypted )」と題されている。ネアンデルタール人とデニソワ人の絶滅したヒト科の系統は、30万年前から4万年前までユーラシア大陸全体に存在していた。ネアンデルタール人とデニソワ人の約15人の遺伝子配列が明らかになっているにもかかわらず、血液型の基礎となる遺伝子の研究はこれまで軽視されてきた。しかし、血液型は人類学者が人類の集団の起源、移動、交配を復元するための最初のマーカーとなった。

中国科学院プロセス工学研究所(IPE)、北京朝陽病院、クイーンズランド大学(オーストラリア)の研究者らは、脈絡膜新生血管治療のための血管内皮増殖因子(VEGF)抗体を送達するために、制御性T細胞エキソソーム(rEXS)をベースにした新しい製剤を開発した。2021年7月26日にNature Biomedical Engineeringのオンライン版に掲載されたこの論文は、「制御性T細胞由来のエクソソームに結合した開裂性VEGF抗体による脈絡膜新生血管の抑制(Reduction of Choroidal Neovascularization Via Cleavable VEGF Antibodies Conjugated to Exosomes Derived from Regulatory T Cells)」と題されている。眼球新生血管は、加齢黄斑変性症や糖尿病性網膜症などの眼疾患と関連することが多く、重度の視力低下を引き起こす可能性がある。現在、臨床現場で行われている眼新生血管疾患の治療法は、VEGF抗体(aV)を眼内に注射することで、VEGFの活性を阻害し、病原性の血管新生を抑制するものだ。しかし、この治療法だけでは、房水との代謝が速く、病巣への集積が悪く、効果が限定的であるという問題がある。また、上記のaV治療を行っても、不完全な効果しか得られない患者も少なくない。

ケンブリッジ大学とリーズ大学の科学者らは、加齢に伴う記憶喪失をマウスで元に戻すことに成功し、この発見は、加齢に伴う人の記憶喪失を防ぐ治療法の開発につながる可能性があると述べている。研究チームは、2021年7月16日にMolecular Psychiatry誌に掲載された研究で、脳の細胞外マトリックス(神経細胞を取り巻く「足場」)の変化が、加齢に伴う記憶の喪失につながるが、遺伝子治療によってこれらを逆転させることが可能であることを示した。このオープンアクセス論文は、「コンドロイチン6硫酸は加齢における神経可塑性と記憶に必要(Chondroitin 6-Sulphate Is Required for Neuroplasticity and Memory in Ageing)」と題されている。近年、脳の学習・適応能力である神経可塑性や記憶の形成に、ペリニューロナルネット(PNN)が関与していることが明らかになってきた。PNNは、主に脳内の抑制性ニューロンを取り囲む軟骨状の構造体である。PNNの主な役割は、脳の可塑性のレベルをコントロールすることだ。PNNは、ヒトでは5歳頃に出現し、脳内の結合が最適化される可塑性の高まる時期をオフにする。その後、可塑性が部分的にオフになり、脳の効率は上がるが可塑性は低下する。

毎年、世界中で何十万人もの人々が末梢神経を損傷し、長期にわたる障害を負っている。末梢神経系は、循環器系に似ている。血管のネットワークが体のあらゆる部分に到達するが、血管の中を血液が流れる代わりに、電気信号が軸索と呼ばれる細い繊維を介して情報を伝達し、神経幹に取り込まれる。この神経幹は、全身の情報を脳に伝え、活動を調整し、運動機能や感覚機能を生み出す通信網である。手足の損傷によく見られるように、神経幹の1つが損傷したり断裂したりすると、痛みや麻痺、さらには生涯にわたる障害が発生する可能性がある。このような状況では、損傷した神経を修復するために外科手術が必要となる。標準的な治療法は、剥離した神経を直接縫合したり、神経幹に形成されたギャップが大きい場合には、外科医が患者の脚から無傷の神経幹を移植し、それを損傷部位に移植することで、別の部位(すなわち脚)に損傷を生じさせることである。今日では、神経幹を再結合させて軸索を再生させ、運動機能や感覚機能を回復させる方法がある。そのような方法の1つとして、合成の中空神経チューブを移植することで、ギャップを埋め、患者に二次的な損傷を与えることなく神経を回復させることができる。

植物はDNAを溜め込む生き物である。後で役に立つかもしれないものは絶対に捨てないという信念のもと、植物は自分のゲノム全体を複製して、追加された遺伝子の荷物を抱え込むことが多い。余分な遺伝子は、自由に変異して新たな特徴を生み出し、進化の速度を速める。今回の研究では、松、ヒノキ、セコイア、銀杏、ソテツなどの種子植物である裸子植物の進化の歴史において、このような複製イベントが極めて重要であったことが明らかになった。本研究は、現代の裸子植物の祖先が、3億5千万年以上前にゲノム重複を起こしていたことが、裸子植物の起源に直接貢献した可能性を示すものだ。その後のゲノム重複は、これらの植物が劇的に変化する生態系の中で生き残るための革新的な形質の進化の源となり、過去2,000万年の間に最近復活した植物の基礎を築いた。本研究は、2021年7月19日にNature Plantsにオンライン掲載された。この論文は、「裸子植物における表現型進化の大きな流れは、遺伝子の重複と系統的な対立にある(Gene Duplications and Phylogenomic Conflict Underlie Major Pulses of Phenotypic Evolution in Gymnosperms )」と題されている。フロリダ自然史博物館の博士課程を卒業したばかりで、本研究の筆頭著者であるGregory Stull 博士は、「進化の初期にこのような出来事があったことで、遺伝子が進化してまったく新しい機能を生み出す機会が生まれ、裸子植物が新しい生息地に移行したり、生態系の上昇に役立ったりする可能性があった」と述べている。

腫瘍細胞が血流に乗って体の他の部分に広がるのを防ぐのに役立つと思われる特殊なタンパク質が発見された。ジョンズ・ホプキンス大学の化学・生体分子工学博士候補で、アルバータ大学およびポンペウ・ファブラ大学(スペイン)の同僚と共同で行った本研究論文の筆頭著者であるKaustav Bera 氏は、「我々は、このTRPM7(transient receptor potential cation channel subfamily M member 7)というタンパク質が、循環系を流れる流体の圧力を感知して、細胞が血管系を通って広がるのを止めることを発見した。」「転移した腫瘍細胞は、このセンサータンパク質のレベルが著しく低下していることがわかった。そのため、流体の流れに背を向けるのではなく、効率的に循環に入り込むことができるのだ」と述べている。この研究成果は、Science Advances誌2021年7月9日号に掲載され、転移の中でもほとんど理解されていない「体内浸潤」と呼ばれる部分に光を当てている。

フランシス・クリック研究所(英国)の研究者らは、これまで哺乳類の進化とともに消滅したと考えられていた、SARS-CoV-2やジカウイルスなどのRNAウイルスから哺乳類の幹細胞を守るための重要なメカニズムを発見した。このメカニズムを利用して、新しい抗ウイルス治療法を開発できる可能性があるという。ウイルスは、宿主に感染すると、細胞内に侵入して複製を行う。哺乳類のほとんどの細胞では、インターフェロンと呼ばれるタンパク質が第一の防御策となる。しかし、幹細胞には、インターフェロンの反応を引き起こす能力がないため、幹細胞がどのようにして自分自身を守るかについては不明な点があった。サイエンス誌の2021年7月9日号に掲載された今回の研究では、マウスの幹細胞の遺伝物質を分析し、その中に、ウイルスのRNAを切断してRNAウイルスの複製を阻止する抗ウイルスダイサー(antiviral Dicer:aviDicer)と呼ばれるタンパク質を構築するための命令が含まれていることを発見した。このような防御方法はRNA干渉と呼ばれ、植物や無脊椎動物の細胞もこの方法を用いている。 この論文は、「ダイサーのアイソフォームが哺乳類の幹細胞を複数のRNAウイルスから守る(An Isoform of Dicer Protects Mammalian Stem Cells Against Multiple RNA Viruses)」と題されている。

合成生物学とは、ある化学物質を感知すると蛍光を発するなど、細胞に新しい機能を持たせる方法だ。通常は、ある入力をきっかけに遺伝子が発現するように細胞を改変することで実現する。しかし、細胞が必要な遺伝子を転写したり翻訳したりするのに必要な時間があるため、分子を検出するようなイベントと結果としての出力との間には、長いタイムラグがあることが多い。今回、MITの合成生物学者らは、このような回路を設計するために、高速で可逆的なタンパク質-タンパク質相互作用のみに依存する代替アプローチを開発した。この方法では、遺伝子がmRNAに転写されたり、タンパク質に翻訳されたりするのを待つ必要がないため、数秒以内に回路を立ち上げることができると言う。 「我々は、これまで誰も体系的に開発できなかった、非常に速いタイムスケールで起こるタンパク質の相互作用を設計する手法を確立した。この種の回路は、環境センサーや、病気の状態や心臓発作などの切迫した事象を明らかにする診断装置の開発に役立つだろう」とこの研究者らは述べている。

多くの人は、粘液を本能的に嫌なものだと思っているが、実は、我々の健康にとって信じられないほど多くの貴重な機能を持っている。我々の大切な腸内フローラを絶えず注意し、バクテリアの餌となっている。また、体の表面を覆い、外敵から身を守るバリアとして、感染症から身を守る役割も果たしている。これは、粘液が細菌を出し入れするフィルターの役割を果たしているからで、細菌は食間の粘液に含まれる糖分を餌にしている。そこで、体内にすでに存在する粘液を適切な糖分で作り出すことができれば、まったく新しい医療に利用できるかもしれない。このたび、DNRFセンターオブエクセレンス、コペンハーゲン糖鎖研究センターの研究者らは、健康な粘液を人工的に作り出す方法を発見した。この論文は、2021年7月1日にNature Communicationsのオンライン版に掲載された。 このオープンアクセス論文は、「遺伝子操作された細胞による、定義されたO-Glycanを持つヒトのムチノームの提示(Display of the Human Mucinome with Defined O-Glycan by Gene Engineered Cells)」と題されている。

グリフィス大学(オーストラリア)の研究者らは、癌の腫瘍マーカーを検出する新しい方法を開発し、早期診断に役立てようとしている。クイーンズランド・マイクロ・ナノテクノロジーセンターのムハマド・シディキー准教授と、グリフィス創薬研究所の細胞工場・バイオポリマーセンターのディレクターであるベルント・レーム教授が率いる研究チームは、新しいクラスの超常磁性ナノ材料を用いて、卵巣癌などの腫瘍マーカーを安価で高感度に検出する方法を考案した。この研究成果は、2021年6月29日にACS Applied Materials and Interfacesのオンライン版に掲載された。 この論文は、「バイオエンジニアリングされたポリマーナノビーズによる癌バイオマーカーの分離と電気化学的検出(Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers) 」と題されている。

コロンビア大学のダスティン・R・ルーベンスタイン博士(生態学・進化学・環境生物学教授)率いる研究チームは、2021年6月15日にPNASのオンライン版に掲載された論文で、同じ海産テッポウエビ科の中でも、Synalpheus はゲノムサイズと社会行動が大きく異なるだけでなく、時間とともに共進化していることを明らかにした。このグループは、アリやハチのような真社会性社会で生活するように進化した唯一の海洋生物であり、コロニー内の一部の個体が自分の生殖を放棄して他の個体の子孫を育てる手助けをすることから、長年にわたって研究されてきた。しかし、研究チームがテッポウエビのゲノムサイズが非常に多様であることを発見したのは、わずか数年前のことだった。いくつかの種では、ヒトのゲノムサイズの4~5倍以上もある非常に大きなゲノムを持っている。また、ルーベンスタイン博士は、「真社会性種が最も大きなゲノムを持っているようだ」と述べている。これは、いくつかの昆虫の系統で見られるのとはまったく逆の結果である。このパターンを受けて、研究チームは、真社会性種がなぜこのように大きなゲノムを持っているのかを解明するために、米粒ほどの大きさしかない海綿に生息するエビのゲノムをさらに詳しく調べた。

南フロリダ大学(USF Health)とタンパ総合病院(Tampa General Hospital)が新たに発表した研究によると、モノクローナル抗体は、リスクの高い患者に早期に投与することで、 COVID-19 に関連する救急外来の受診や入院を減少させる効果があることがわかった。FDAのガイドラインに沿って使用すれば、この治療法は、パンデミックによる患者や限られた医療資源への継続的な負担を軽減することができる、と研究者らは提案している。この共同研究は、2021年6月4日にOpen Forum Infectious Diseasesのオンライン版に掲載された。このオープンアクセス論文は、「高リスクの外来患者に対するSARS-CoV-2モノクローナル抗体輸液の有効性(Effectiveness of SARS-CoV-2 Monoclonal Antibody Infusions in High-Risk Outpatients)」と題されている。治験中のモノクローナル抗体療法は、静脈内に投与され、COVID-19の原因ウイルスであるSARS-CoV-2による感染を阻止するよう特別に設計されている。FDAは、重症化のリスクが高い軽度から中等度のCOVID-19の外来患者を対象に、モノクローナル抗体の緊急使用許可(EUA)を与えている。このような高リスクの患者は、入院、人工呼吸、およびコロナウイルスによる死亡を含むその他の合併症を起こしやすいとされている。

絶滅したと思われていたシーラカンスは、海の奥深くに生息する巨大な魚だ。今回、2021年6月17日付けのCurrent Biology誌オンライン版に掲載された報告によると、シーラカンスは、その巨大さに加えて、非常に長い時間、おそらく1世紀近く生きることができるという証拠が得られ、最高齢の標本は84歳であったという。また、シーラカンスは55歳前後で成熟し、5年間子供を妊娠するなど、非常にゆっくりとした生活を送っていることも報告されている。フランスのブローニュ=シュル=メールにあるIFREMER海峡・北海漁業研究ユニットのKélig Mahé博士は、「今回の最も重要な発見は、これまでシーラカンスの年齢を5分の1に過小評価していたことだ」と述べている。「シーラカンスの年齢を新たに推定したことで、同サイズの海産魚の中で最も遅いとされるシーラカンスの体の成長や、その他の生活史的特徴を再評価することができ、シーラカンスの生活史は実際にはすべての魚の中で最も遅いもののひとつであることがわかった」と述べている。

2021年6月18日にJAMA Network Open誌のオンライン版に掲載された研究論文で、テキサス大学サンアントニオ健康科学センター(UT Health San Antonio)の研究者らは、しゃっくりに対する科学的根拠に基づく新しい治療法について述べている。この論文の中で、科学者らはこの治療法を「強制吸気型吸引・嚥下ツール(forced inspiratory suction and swallow tool:FISST)」という新しい言葉で表現している。また、249名のユーザーを対象に、紙袋に息を吹き込むなどのしゃっくりの家庭療法に比べて優れているかどうかを調査した結果も報告されている。UT Health San AntonioのJoe R. and Teresa Lozano Long School of Medicineの脳神経外科准教授であるAli Seifi医学博士は、「しゃっくりは、人によっては時折煩わしいものだが、生活の質に大きな影響を与える人もいる」と述べている。「脳卒中や脳梗塞の患者や、癌患者も多く含まれている。今回の研究では、数名の癌患者が参加した。化学療法の中にはしゃっくりを引き起こすものがある。この論文は 「シャックリを止めるための強制吸気吸引・嚥下ツールの評価(Evaluation of the Forced Inspiratory Suction and Swallow Tool to Stop Hiccups )」と題されている。 

以下、サンフランシスコ州立大学(SFSU)生物学部教授のマイケル・A・ゴールドマン博士(Michael A. Goldman)による記事より:今日、コンピューターモデルを使って構造や回復力のシミュレーションを行わずに、橋を架けて、その上を車でゆっくり走るエンジニアはいないだろう。それなのに、なぜ製薬会社は洗練されたシミュレーションを行わずに、動物や人間で薬を試す必要があるのだろうか? 2021年(6月14日~18日)に開催されたPrecision Medicine World Conference(PMWC)の人工知能とデータサイエンスに関するバーチャルシンポジウムで、アムジェンのグローバルプロダクトジェネラルマネージャーであるSiddhartha Roychoudhury博士は、「臨床試験デザインは1970年代のままである」と述べている。可能性のある薬の効果を評価するために、インシリコの「患者」(コンピュータモデルの中にのみ存在する患者)という考えは新しいものではない。

細胞には、DNAを複製して新たな細胞に送り込む装置がある。また、ポリメラーゼと呼ばれる同じ類の装置は、RNAメッセージを構築する。これは、中央のDNAレポジトリにあるレシピからコピーされたメモのようなもので、より効率的にタンパク質に読み込まれるようになっている。しかし、ポリメラーゼは、DNAからDNAまたはRNAへの一方向にしか働かないと考えられていた。そのため、RNAメッセージがゲノムDNAのレシピブックに書き戻されるのを妨げていた。今回、トーマス・ジェファーソン大学の研究者らは、RNAセグメントをDNAに書き戻すことができることを初めて証明した。これは、生物学の中心的なドグマに挑戦するものであり、生物学の多くの分野に影響を与える可能性がある。フィラデルフィアにあるトーマス・ジェファーソン大学の生化学・分子生物学准教授、Richard Pomerantz博士は、「この研究は、RNAのメッセージをDNAに変換するメカニズムを細胞内に持つことの意義を理解する上で、他の多くの研究への扉を開くものだ」と述べている。ヒトのポリメラーゼがこのようなことを高効率で行えるという現実は、多くの疑問を投げかける。例えば、今回の発見は、RNAメッセージがゲノムDNAを修復したり書き換えたりするためのテンプレートとして利用できることを示唆している。

2021年6月10日発行のCell誌に掲載された研究論文によると、体内の免疫系が宿主の細胞を傷つけることなく、癌細胞を排除することができるという驚くべき新しいメカニズムが明らかになった。この発見は、癌細胞に選択的に作用し、正常な細胞や組織には無害であるように設計されたファースト・イン・クラスの医薬品を開発する可能性を秘めている。この発見が成功すれば、適切な薬剤を適切な量、適切なタイミングで投与することができるようになり、精密医療の実践を向上させることができるだろう。この論文は「好中球エラスターゼが癌細胞を選択的に死滅させ、腫瘍形成を抑制する(Neutrophil Elastase Selectively Kills Cancer Cells and Attenuates Tumorigenesis)」と題されている。(画像は好中球) 

Life Science News from Around the Globe

Edited by Michael D. O'Neill

Michael D. O'Neill

バイオクイックニュースは、サイエンスライターとして30年以上の豊富な経験があるマイケルD. オニールによって発行されている独立系科学ニュースメディアです。世界中のバイオニュース(生命科学・医学研究の動向)をタイムリーにお届けします。バイオクイックニュースは、現在160カ国以上に読者がおり、2010年から6年連続で米国APEX Award for Publication Excellenceを受賞しました。
BioQuick is a trademark of Michael D. O'Neill

LinkedIn:Michael D. O'Neill