Extracellular vesicles derived from mesenchymal stem cells as a potential therapeutic agent in acute kidney injury (AKI) in felines: review and perspectives

Posted: 2021-09-16 19:00:00
Mesenchymal stem cells (MSCs), known from their key role in the regeneration process of tissues, and their abilities to release bioactive factors like extracellular vesicles (EVs) could be considered as a potential, modern tool in the treatment of AKI (acute kidney injury) in both human and veterinary patients. The complex pathophysiology of a renal function disorder (AKI) makes difficult to find a universal therapy, but the treatment strategy is based on MSCs and derived from them, EVs seem to solve this problem. Due to their small size, the ability of the cargo transport, the ease of crossing the barriers and the lack of the ability to proliferate and differentiate, EVs seem to have a significant impact on the development such therapy. Their additional impact associated with their ability to modulate immune response and inflammation process, their strong anti-fibrotic and anti-apoptotic effects and the relation with the releasing of the reactive oxygen species (ROS), that pivotal role in the AKI development is undoubtedly, limits the progress of AKI. Moreover, the availability of EVs from different sources encourages to extend research with using EVs from MSCs in AKI treatment in felines; in that, the possibilities of kidney injuries treatment are still limited to the classical therapies burdened with dangerous side effects. In this review, we underline the significance of the processes, in whose EVs are included during the AKI in order to show the potential benefits of EVs-MSCs-based therapies against AKI in felines. Keywords: Acute kidney injury; Apoptosis; Cats; Extracellular vesicles; Fibrosis; Inflammation; Mesenchymal stem cells; Oxidative stress.

参考サイト PubMed: exsome


6月 01, 2021 バイオアソシエイツ

Cardea Bio社、エクソソームとEVの検出技術「EV-Chip」を開発。リキッドバイオプシーをリアルタイムで分析する新世代のポータブルデバイスを目指す

分子生物学と半導体エレクトロニクスを統合するTech+Bio企業である米国のCardea Bio社は、同社の最高科学責任者であるキアナ・アラン博士と共同研究者が、「生物学的に活性化されたグラフェン・トランジスタによる年齢別循環エクソソームの迅速かつ電子的な識別と定量化( Rapid and Electronic Identification and Quantification of Age-Specific Circulating Exosomes via Biologically Activated…

ゲスト 683人 と メンバー 6人 がオンラインです