Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates


Posted: 2021-11-01 19:00:00
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function. Keywords: CYP3A4; CYP3A5; CYP3A7; adverse drug event; endogenous biomarker; inter-individual difference.

参考サイト PubMed: covid-19



バイオクイックニュース日本語版:COVID-19特集

バイオクイックニュース日本語版
4月 30, 2020 バイオアソシエイツ

MITの科学者がCOVID-19等におけるサイトカインストームの治療に有用な水溶性改変サイトカイン受容体を設計

Covid-19 の決定的な特徴の1つは、重症例で発生する可能性のある過剰な免疫応答だ。 この免疫過剰反応のバーストは、サイトカインストームとも呼ばれ、肺に損傷を与え、致命的となる可能性がある。MITの研究チームは、これらの過剰なサイトカインを吸収するために、抗体と構造が類似した特殊なタンパク質を開発した。…

ゲスト 698人 と メンバー 6人 がオンラインです