SARS-CoV-2 3C-like protease antagonizes interferon-beta production by facilitating the degradation of IRF3


Posted: 2021-09-11 19:00:00
. 2021 Sep 3;148:155697. doi: 10.1016/j.cyto.2021.155697. Online ahead of print. Affiliations Expand Affiliations 1 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China. 2 College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China. 3 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China. Electronic address: liuv@henau.edu.cn. Item in Clipboard Wenwen Zhang et al. Cytokine. 2021. Show details Display options Display options Format . 2021 Sep 3;148:155697. doi: 10.1016/j.cyto.2021.155697. Online ahead of print. Affiliations 1 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China. 2 College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China. 3 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China. Electronic address: liuv@henau.edu.cn. Item in Clipboard CiteDisplay options Display options Format Abstract The prevalence of SARS-CoV-2 is a great threat to global public health. However, the relationship between the viral pathogen SARS-CoV-2 and host innate immunity has not yet been well studied. The genome of SARS-CoV-2 encodes a viral protease called 3C-like protease. This protease is responsible for cleaving viral polyproteins during replication. In this investigation, 293T cells were transfected with SARS-CoV-2 3CL and then infected with Sendai virus (SeV) to induce the RIG-I like receptor (RLR)-based immune pathway. q-PCR, luciferase reporter assays, and western blotting were used for experimental analyses. We found that SARS-CoV-2 3CL significantly downregulated IFN-β mRNA levels. Upon SeV infection, SARS-CoV-2 3CL inhibited the nuclear translocation of IRF3 and p65 and promoted the degradation of IRF3. This effect of SARS-CoV-2 3CL on type I IFN in the RLR immune pathway opens up novel ideas for future research on SARS-CoV-2. Keywords: IFNs; IRF3; Innate immune; RLR signalling pathway; SARS-CoV-2 3CL. Copyright © 2021 Elsevier Ltd. All rights reserved. Similar articles West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5. Zhang HL, Ye HQ, Liu SQ, Deng CL, Li XD, Shi PY, Zhang B. Zhang HL, et al. J Virol. 2017 Aug 24;91(18):e02396-16. doi: 10.1128/JVI.02396-16. Print 2017 Sep 15. J Virol. 2017. PMID: 28659477 Free PMC article. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C, Bhumkar A, Hunter DJB, Freiberg AN, Jacques D, Lee B, Sierecki E, Gambin Y. Moustaqil M, et al. Emerg Microbes Infect. 2021 Dec;10(1):178-195. doi: 10.1080/22221751.2020.1870414. Emerg Microbes Infect. 2021. PMID: 33372854 Free PMC article. RIG-I-Like Receptor-Mediated Recognition of Viral Genomic RNA of Severe Acute Respiratory Syndrome Coronavirus-2 and Viral Escape From the Host Innate Immune Responses. Kouwaki T, Nishimura T, Wang G, Oshiumi H. Kouwaki T, et al. Front Immunol. 2021 Jun 25;12:700926. doi: 10.3389/fimmu.2021.700926. eCollection 2021. Front Immunol. 2021. PMID: 34249006 Free PMC article. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease. Li Q, Kang C. Li Q, et al. Microorganisms. 2020 Aug 18;8(8):1250. doi: 10.3390/microorganisms8081250. Microorganisms. 2020. PMID: 32824639 Free PMC article. Review. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Akaji K, Konno H. Akaji K, et al. Molecules. 2020 Aug 27;25(17):3920. doi: 10.3390/molecules25173920. Molecules. 2020. PMID: 32867349 Free PMC article. Review. LinkOut - more resources Miscellaneous [x] Cite Copy Format: Send To [x]

参考サイト PubMed: covid-19


Powered by Kreditvergleich


バイオクイックニュース日本語版:COVID-19特集

バイオクイックニュース日本語版
8月 05, 2020 バイオアソシエイツ

コウモリのウイルス耐性と長寿命が、新型コロナウイルスへのヒントを提供するとの展望が発表された

コウモリは、ヒトに影響を与える多くの致命的なウイルス(エボラ出血熱、狂犬病、そして最近では COVID-19 を引き起こすコロナウイルスのSARS-CoV-2など)に対し、耐性があると考えられている。 ヒトはこれらの病原体で有害な症状を経験するが、コウモリはウイルスに著しく耐えることができ、さらに、同じサイズの陸上哺乳類よりもはるかに長く生きる。コウモリの寿命とウイルス耐性の秘密は何か?…