COVID-19 lockdown closures of emissions sources in India: Lessons for air quality and climate policy

Posted: 2021-11-20 20:00:00
Reduced anthropogenic activities during the COVID-19 pandemic caused significant reductions in ambient fine particulate matter (PM2.5), SO2 and NOx concentrations across India. However, tropospheric O3 concentrations spiked over many urban regions. Moreover, reductions in SO2 and NOx (atmospheric cooling agents) emissions unmask heating exerted by warming forcers. Basing governmental guidelines, we model daily emissions reductions in CO2 and short-lived climate forcers (SLCFs) during different lockdown periods using bottom-up regional emission inventory. The transport sector, with maximum level of closure, followed by power plants and industry reduced nearly -50% to -75% emissions of CO2, primary PM2.5, SO2 and NOx, while warming SLCFs (black carbon, CH4, CO and non-methane VOCs) showed insignificant reduction from continuing activity in residential and agricultural sectors. Consequently, the analysis indicates that reduction in the emission ratio of NOx to NMVOC coincided spatially with observed increases in O3, consistent with reduced uptake of O3 from night-time NOx reactions. Also, similar reductions, occurring for longer timescales (say, a year), can potentially increase the annual warming rate over India from the positive regional temperature response, estimated using climate metric. Further, by linking ongoing policies to sectoral reductions during lockdown, this study shows that the relative pacing of implementation among policies is crucial to avoid counter-productive results. A key policy recommendation is introduction and improving efficacy of programs targeting reduction of NMVOC and warming SLCF emissions (shifts away from biomass cooking technologies, household electrification and curbing open burning of crop residues), must precede the strengthening of policies targeting NOx and SO2 dominated sectors. Keywords: Air quality policy; COVID-19 lockdown; Climate policy; Ozone pollution; Temperature response.

参考サイト PubMed: covid-19


6月 06, 2021 バイオアソシエイツ


COVID-19 パンデミックが始まってから数カ月後の2020年初頭、科学者らはCOVID-19感染症の原因ウイルスであるSARS-CoV-2の全ゲノム配列を決定することができた。その時点で、その遺伝子の多くはすでに判明していたが、タンパク質をコードする遺伝子の全容は解明されていなかった。今回、MITの研究者らが広範な比較ゲノム研究を行った結果、SARS-CoV-2のゲノムについて、最も正確で完全な遺伝子アノテーションを作成した。 この研究結果は、2021年5月11日にNature…

ゲスト 786人 と メンバー 5人 がオンラインです